scholarly journals Visual cortex represents the statistical distributions of objects in natural scenes

2010 ◽  
Vol 10 (7) ◽  
pp. 1260-1260
Author(s):  
D. Stansbury ◽  
T. Naselaris ◽  
A. Vu ◽  
J. Gallant
2017 ◽  
Author(s):  
Daniel Kaiser ◽  
Marius V. Peelen

AbstractTo optimize processing, the human visual system utilizes regularities present in naturalistic visual input. One of these regularities is the relative position of objects in a scene (e.g., a sofa in front of a television), with behavioral research showing that regularly positioned objects are easier to perceive and to remember. Here we use fMRI to test how positional regularities are encoded in the visual system. Participants viewed pairs of objects that formed minimalistic two-object scenes (e.g., a “living room” consisting of a sofa and television) presented in their regularly experienced spatial arrangement or in an irregular arrangement (with interchanged positions). Additionally, single objects were presented centrally and in isolation. Multi-voxel activity patterns evoked by the object pairs were modeled as the average of the response patterns evoked by the two single objects forming the pair. In two experiments, this approximation in object-selective cortex was significantly less accurate for the regularly than the irregularly positioned pairs, indicating integration of individual object representations. More detailed analysis revealed a transition from independent to integrative coding along the posterior-anterior axis of the visual cortex, with the independent component (but not the integrative component) being almost perfectly predicted by object selectivity across the visual hierarchy. These results reveal a transitional stage between individual object and multi-object coding in visual cortex, providing a possible neural correlate of efficient processing of regularly positioned objects in natural scenes.


eNeuro ◽  
2016 ◽  
Vol 3 (6) ◽  
pp. ENEURO.0127-16.2016 ◽  
Author(s):  
Jonathan R. Williford ◽  
Rüdiger von der Heydt

2019 ◽  
Vol 31 (10) ◽  
pp. 1563-1572 ◽  
Author(s):  
Clayton Hickey ◽  
Daniele Pollicino ◽  
Giacomo Bertazzoli ◽  
Ludwig Barbaro

People are quicker to detect examples of real-world object categories in natural scenes than is predicted by classic attention theories. One explanation for this puzzle suggests that experience renders the visual system sensitive to midlevel features diagnosing target presence. These are detected without the need for spatial attention, much as occurs for targets defined by low-level features like color or orientation. The alternative is that naturalistic search relies on spatial attention but is highly efficient because global scene information can be used to quickly reject nontarget objects and locations. Here, we use ERPs to differentiate between these possibilities. Results show that hallmark evidence of ultrafast target detection in frontal brain activity is preceded by an index of spatially specific distractor suppression in visual cortex. Naturalistic search for heterogenous targets therefore appears to rely on spatial operations that act on neural object representations, as predicted by classic attention theory. People appear able to rapidly reject nontarget objects and locations, consistent with the idea that global scene information is used to constrain naturalistic search and increase search efficiency.


Author(s):  
Qingyong Li ◽  
Zhiping Shi ◽  
Zhongzhi Shi

Sparse coding theory demonstrates that the neurons in the primary visual cortex form a sparse representation of natural scenes in the viewpoint of statistics, but a typical scene contains many different patterns (corresponding to neurons in cortex) competing for neural representation because of the limited processing capacity of the visual system. We propose an attention-guided sparse coding model. This model includes two modules: the non-uniform sampling module simulating the process of retina and a data-driven attention module based on the response saliency. Our experiment results show that the model notably decreases the number of coefficients which may be activated, and retains the main vision information at the same time. It provides a way to improve the coding efficiency for sparse coding model and to achieve good performance in both population sparseness and lifetime sparseness.


2004 ◽  
Vol 91 (6) ◽  
pp. 2859-2873 ◽  
Author(s):  
Matthew S. Caywood ◽  
Benjamin Willmore ◽  
David J. Tolhurst

It has been hypothesized that mammalian sensory systems are efficient because they reduce the redundancy of natural sensory input. If correct, this theory could unify our understanding of sensory coding; here, we test its predictions for color coding in the primate primary visual cortex (V1). We apply independent component analysis (ICA) to simulated cone responses to natural scenes, obtaining a set of colored independent component (IC) filters that form a redundancy-reducing visual code. We compare IC filters with physiologically measured V1 neurons, and find great spatial similarity between IC filters and V1 simple cells. On cursory inspection, there is little chromatic similarity; however, we find that many apparent differences result from biases in the physiological measurements and ICA analysis. After correcting these biases, we find that the chromatic tuning of IC filters does indeed resemble the population of V1 neurons, supporting the redundancy-reduction hypothesis.


1994 ◽  
Vol 6 (4) ◽  
pp. 559-601 ◽  
Author(s):  
David J. Field

A number of recent attempts have been made to describe early sensory coding in terms of a general information processing strategy. In this paper, two strategies are contrasted. Both strategies take advantage of the redundancy in the environment to produce more effective representations. The first is described as a “compact” coding scheme. A compact code performs a transform that allows the input to be represented with a reduced number of vectors (cells) with minimal RMS error. This approach has recently become popular in the neural network literature and is related to a process called Principal Components Analysis (PCA). A number of recent papers have suggested that the optimal “compact” code for representing natural scenes will have units with receptive field profiles much like those found in the retina and primary visual cortex. However, in this paper, it is proposed that compact coding schemes are insufficient to account for the receptive field properties of cells in the mammalian visual pathway. In contrast, it is proposed that the visual system is near to optimal in representing natural scenes only if optimality is defined in terms of “sparse distributed” coding. In a sparse distributed code, all cells in the code have an equal response probability across the class of images but have a low response probability for any single image. In such a code, the dimensionality is not reduced. Rather, the redundancy of the input is transformed into the redundancy of the firing pattern of cells. It is proposed that the signature for a sparse code is found in the fourth moment of the response distribution (i.e., the kurtosis). In measurements with 55 calibrated natural scenes, the kurtosis was found to peak when the bandwidths of the visual code matched those of cells in the mammalian visual cortex. Codes resembling “wavelet transforms” are proposed to be effective because the response histograms of such codes are sparse (i.e., show high kurtosis) when presented with natural scenes. It is proposed that the structure of the image that allows sparse coding is found in the phase spectrum of the image. It is suggested that natural scenes, to a first approximation, can be considered as a sum of self-similar local functions (the inverse of a wavelet). Possible reasons for why sensory systems would evolve toward sparse coding are presented.


Sign in / Sign up

Export Citation Format

Share Document