anterior intraparietal sulcus
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
David Wisniewski ◽  
Carlos González-García ◽  
Silvia Formica ◽  
Alexandra Woolgar ◽  
Marcel Brass

Our ability to flexibly adapt to changing demands is supported by flexible coding of task-relevant information in frontal and parietal brain regions. Converging evidence suggest that coding of stimuli and task rules in these regions become stronger as task difficulty increases. Here, we tested whether there is a corresponding change in the representational format as well, an issue that has rarely been addressed directly in past research. Participants performed a visual classification task under varying levels of perceptual difficulty, while we acquired fMRI. Using a model-based representational similarity approach, we tested whether stimulus representations retain exemplar-level information. We expected representations to drop such exemplar-level information as perceptual difficulty increases, which would indicate a focus on representing behaviorally relevant category information. Counter to these expectations, and in contrast to previous research, we found frontal and parietal brain regions contained exemplar-level stimulus information. Interestingly, the anterior intraparietal sulcus (aIPS) retained exemplar-level stimulus information even in perceptually difficult trials, and these representations were directly related to performance. Overall, these findings call for a reassessment of the neural mechanisms underlying human adaptive behavior during visual classification.


2020 ◽  
Author(s):  
Lukas Hensel ◽  
Caroline Tscherpel ◽  
Jana Freytag ◽  
Stella Ritter ◽  
Anne K Rehme ◽  
...  

Abstract Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.


2020 ◽  
Vol 124 (2) ◽  
pp. 557-573
Author(s):  
Vonne van Polanen ◽  
Guy Rens ◽  
Marco Davare

This article provides new insights into the neural mechanisms underlying object lifting and perception. Using transcranial magnetic stimulation during object lifting, we show that effects of previous experience on force scaling and weight perception are not mediated by the anterior intraparietal sulcus or the lateral occipital cortex (LO). In contrast, we highlight a unique role for LO in load force scaling, suggesting different brain processes for grip and load force scaling in object manipulation.


Author(s):  
Vonne van Polanen ◽  
Guy Rens ◽  
Marco Davare

ABSTRACTSkillful object lifting relies on scaling fingertip forces according to the object’s weight. When no visual cues about weight are available, force planning relies on recent lifting experience. Recently, we showed that previously lifted objects also affect weight estimation, as objects are perceived to be lighter when lifted after heavy objects compared to light ones. Here, we investigated the underlying neural mechanisms mediating these effects. We asked participants to lift objects and estimate their weight. Simultaneously, we applied transcranial magnetic stimulation (TMS) during the dynamic loading or static holding phase. Two subject groups received TMS of either the anterior intraparietal sulcus (aIPS) or lateral occipital area (LO), known to be important nodes in object grasping and perception. We hypothesized that TMS-induced disruption of aIPS and LO would alter force scaling and weight perception. Contrary to our hypothesis, we did not find effects of aIPS or LO stimulation on force planning or weight estimation caused by previous lifting experience. However, we found that TMS of both areas increased grip forces, but only when applied during dynamic loading, and decreased weight estimation, but only when applied during static holding, suggesting time-specific effects. Interestingly, our results also indicate that TMS over LO, but not aIPS, affected load force scaling specifically for heavy objects, which further indicates that planning of load and grip forces might be controlled differently. These findings provide new insights on the interactions between brain networks mediating action and perception during object manipulation.NEW & NOTEWORTHYThis article provides new insights into the neural mechanisms underlying object lifting and perception. Using transcranial magnetic stimulation during object lifting, we show that effects of previous experience on force scaling and weight perception are not mediated by the anterior intraparietal sulcus nor the lateral occipital cortex (LO). In contrast, we highlight a unique role for LO in load force scaling, suggesting different brain processes for grip and load force scaling in object manipulation.


2019 ◽  
Vol 30 (3) ◽  
pp. 1677-1687 ◽  
Author(s):  
Vanessa Era ◽  
Salvatore Maria Aglioti ◽  
Matteo Candidi

Abstract Competitive and cooperative interactions are based on anticipation or synchronization with the partner’s actions. Both forms of interaction may either require performing imitative or complementary movements with respect to those performed by our partner. We explored how parietal regions involved in the control of imitative behavior (temporo-parietal junction, TPJ), goal coding and visuo-motor integration (anterior intraparietal sulcus, aIPS) contribute to the execution of imitative and complementary movements during cooperative and competitive interactions. To this aim, we delivered off-line non-invasive inhibitory brain stimulation to healthy individuals’ left aIPS and right TPJ before they were asked to reach and grasp an object together with a virtual partner by either performing imitative or complementary interactions. In different blocks, participants were asked to compete or cooperate with the virtual partner that varied its behavior according to cooperative or competitive contexts. Left aIPS and right TPJ inhibition impaired individuals’ performance (i.e., synchrony in cooperative task and anticipation in competition) during complementary and imitative interactions, respectively, in both cooperative and competitive contexts, indicating that aIPS and TPJ inhibition affects own-other action integration and action imitation (that are different in complementary vs imitative interactions) more than action synchronization or anticipation (that are different in cooperative vs competitive contexts).


2019 ◽  
Author(s):  
Artur Pilacinski ◽  
Melanie S. Höller-Wallscheid ◽  
Axel Lindner

ABSTRACTWorking memory (WM) is the key process linking perception to action. Several lines of research have, accordingly, highlighted WM’s engagement in sensori-motor associations between retrospective stimuli and future behavior. Using human fMRI we investigated whether prior information about the effector used to report in a WM task would have an impact on the way the same sensory stimulus is maintained in memory – even if a behavioral response could not be readily planned. Specifically, we focused on WM-related activity in posterior parietal cortex during the maintenance of spatial items for a subsequent match-to-sample comparison, which was reported either with a verbal or with a manual response. We expected WM activity to be higher for manual response trials, because of posterior parietal cortex’s engagement in both spatial WM and hand movement preparation. Increased fMRI activity for manual response trials in bilateral anterior intraparietal sulcus confirmed our expectations. These results imply that the maintenance of sensory material in WM is optimized for motor context of the upcoming behavioral responses.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Alana X. Batista ◽  
Paulo R. Bazán ◽  
Adriana B. Conforto ◽  
Maria da Graça M. Martin ◽  
Sharon. S. Simon ◽  
...  

Memory dysfunction is one of the main cognitive impairments caused by stroke, especially associative memory. Therefore, cognitive training, such as face-name mnemonic strategy training, could be an important intervention for this group of patients. The goal of this study was to evaluate the behavioral effects of face-name mnemonic strategy training, along with the neural substrate behind these effects, in the left frontoparietal lobe stroke patients. Volunteers underwent 2 sessions of functional magnetic resonance imaging (fMRI) during face-name association task: one prior and the other after the cognitive training. The fMRI followed a block design task with three active conditions: trained face-name pairs, untrained face-name pairs, and a couple of repeated face-name pairs. Prior to each fMRI session, volunteers underwent neuropsychological assessment. Training resulted in better performance on delayed memory scores of HVLT-R, and on recognition on a generalization strategy task, as well as better performance in the fMRI task. Also, trained face-name pairs presented higher activation after training in default-mode network regions, such as the posterior cingulate cortex, precuneus, and angular gyrus, as well as in lateral occipital and temporal regions. Similarly, untrained face-name pairs also showed a nonspecific training effect in the right superior parietal cortex, right supramarginal gyrus, anterior intraparietal sulcus, and lateral occipital cortex. A correlation between brain activation and task performance was also found in the angular gyrus, superior parietal cortex, anterior intraparietal sulcus, and lateral occipital cortex. In conclusion, these results suggest that face-name mnemonic strategy training has the potential to improve memory performance and to foster brain activation changes, by the recruitment of contralesional areas from default-mode, frontoparietal, and dorsal attention networks as a possible compensation mechanism.


2018 ◽  
Vol 30 (5) ◽  
pp. 737-751 ◽  
Author(s):  
Lucia M. Sacheli ◽  
Gaetano Tieri ◽  
Salvatore M. Aglioti ◽  
Matteo Candidi

Although temporal coordination is a hallmark of motor interactions, joint action (JA) partners do not simply synchronize; rather, they dynamically adapt to each other to achieve a joint goal. We created a novel paradigm to tease apart the processes underlying synchronization and JA and tested the causal contribution of the left anterior intraparietal sulcus (aIPS) in these behaviors. Participants had to synchronize their congruent or incongruent movements with a virtual partner in two conditions: (i) being instructed on what specific action to perform, independently from what action the partner performed (synchronization), and (ii) being instructed to adapt online to the partner's action (JA). Offline noninvasive inhibitory brain stimulation (continuous theta-burst stimulation) over the left aIPS selectively modulated interpersonal synchrony in JA by boosting synchrony during congruent interactions and impairing it during incongruent ones, while leaving performance in the synchronization condition unaffected. These results suggest that the left aIPS plays a causal role in supporting online adaptation to a partner's action goal, whereas it is not necessarily engaged in social situations where the goal of the partner is irrelevant. This indicates that, during JAs, the integration of one's own and the partner's action goal is supported by aIPS.


Sign in / Sign up

Export Citation Format

Share Document