scholarly journals Independent Components of Color Natural Scenes Resemble V1 Neurons in Their Spatial and Color Tuning

2004 ◽  
Vol 91 (6) ◽  
pp. 2859-2873 ◽  
Author(s):  
Matthew S. Caywood ◽  
Benjamin Willmore ◽  
David J. Tolhurst

It has been hypothesized that mammalian sensory systems are efficient because they reduce the redundancy of natural sensory input. If correct, this theory could unify our understanding of sensory coding; here, we test its predictions for color coding in the primate primary visual cortex (V1). We apply independent component analysis (ICA) to simulated cone responses to natural scenes, obtaining a set of colored independent component (IC) filters that form a redundancy-reducing visual code. We compare IC filters with physiologically measured V1 neurons, and find great spatial similarity between IC filters and V1 simple cells. On cursory inspection, there is little chromatic similarity; however, we find that many apparent differences result from biases in the physiological measurements and ICA analysis. After correcting these biases, we find that the chromatic tuning of IC filters does indeed resemble the population of V1 neurons, supporting the redundancy-reduction hypothesis.

1994 ◽  
Vol 6 (4) ◽  
pp. 559-601 ◽  
Author(s):  
David J. Field

A number of recent attempts have been made to describe early sensory coding in terms of a general information processing strategy. In this paper, two strategies are contrasted. Both strategies take advantage of the redundancy in the environment to produce more effective representations. The first is described as a “compact” coding scheme. A compact code performs a transform that allows the input to be represented with a reduced number of vectors (cells) with minimal RMS error. This approach has recently become popular in the neural network literature and is related to a process called Principal Components Analysis (PCA). A number of recent papers have suggested that the optimal “compact” code for representing natural scenes will have units with receptive field profiles much like those found in the retina and primary visual cortex. However, in this paper, it is proposed that compact coding schemes are insufficient to account for the receptive field properties of cells in the mammalian visual pathway. In contrast, it is proposed that the visual system is near to optimal in representing natural scenes only if optimality is defined in terms of “sparse distributed” coding. In a sparse distributed code, all cells in the code have an equal response probability across the class of images but have a low response probability for any single image. In such a code, the dimensionality is not reduced. Rather, the redundancy of the input is transformed into the redundancy of the firing pattern of cells. It is proposed that the signature for a sparse code is found in the fourth moment of the response distribution (i.e., the kurtosis). In measurements with 55 calibrated natural scenes, the kurtosis was found to peak when the bandwidths of the visual code matched those of cells in the mammalian visual cortex. Codes resembling “wavelet transforms” are proposed to be effective because the response histograms of such codes are sparse (i.e., show high kurtosis) when presented with natural scenes. It is proposed that the structure of the image that allows sparse coding is found in the phase spectrum of the image. It is suggested that natural scenes, to a first approximation, can be considered as a sum of self-similar local functions (the inverse of a wavelet). Possible reasons for why sensory systems would evolve toward sparse coding are presented.


1992 ◽  
Vol 4 (4) ◽  
pp. 559-572 ◽  
Author(s):  
Joseph J. Atick ◽  
Zhaoping Li ◽  
A. Norman Redlich

A previously proposed theory of visual processing, based on redundancy reduction, is used to derive the retinal transfer function including color. The predicted kernels show the nontrivial mixing of space-time with color coding observed in experiments. The differences in color-coding between species are found to be due to differences among the chromatic autocorrelators for natural scenes in different environments.


2002 ◽  
Vol 357 (1428) ◽  
pp. 1859-1867 ◽  
Author(s):  
Ulrich Hillenbrand ◽  
J. Leo van Hemmen

The present article discusses computational hypotheses on corticothalamic feedback and modulation of cortical response properties. We have recently proposed that the two phenomena are related, hypothesizing that neuronal velocity preference in the visual cortex is altered by feedback to the lateral geniculate nucleus. We now contrast the common view that response adaptation to stimuli subserves a function of redundancy reduction with the idea that it may enhance cortical representation of objects. Our arguments lead to the concept that the corticothalamic loop is involved in reducing sensory input to behaviourally relevant aspects, a pre–attentive gating.


2019 ◽  
Author(s):  
Yosef Singer ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

Visual neurons respond selectively to specific features that become increasingly complex in their form and dynamics from the eyes to the cortex. Retinal neurons prefer localized flashing spots of light, primary visual cortical (V1) neurons moving bars, and those in higher cortical areas, such as middle temporal (MT) cortex, favor complex features like moving textures. Whether there are general computational principles behind this diversity of response properties remains unclear. To date, no single normative model has been able to account for the hierarchy of tuning to dynamic inputs along the visual pathway. Here we show that hierarchical application of temporal prediction - representing features that efficiently predict future sensory input from past sensory input - can explain how neuronal tuning properties, particularly those relating to motion, change from retina to higher visual cortex. This suggests that the brain may not have evolved to efficiently represent all incoming information, as implied by some leading theories. Instead, the selective representation of sensory inputs that help in predicting the future may be a general neural coding principle, which when applied hierarchically extracts temporally-structured features that depend on increasingly high-level statistics of the sensory input.


2009 ◽  
Vol 102 (6) ◽  
pp. 3414-3432 ◽  
Author(s):  
Jonathan D. Victor ◽  
Ferenc Mechler ◽  
Ifije Ohiorhenuan ◽  
Anita M. Schmid ◽  
Keith P. Purpura

A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey and area 17 neurons in the cat to two-dimensional Hermite functions (TDHs). TDHs are intermediate in complexity between traditional analytic stimuli and natural scenes and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above-cited model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear–nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brittany C. Clawson ◽  
Emily J. Pickup ◽  
Amy Ensing ◽  
Laura Geneseo ◽  
James Shaver ◽  
...  

AbstractLearning-activated engram neurons play a critical role in memory recall. An untested hypothesis is that these same neurons play an instructive role in offline memory consolidation. Here we show that a visually-cued fear memory is consolidated during post-conditioning sleep in mice. We then use TRAP (targeted recombination in active populations) to genetically label or optogenetically manipulate primary visual cortex (V1) neurons responsive to the visual cue. Following fear conditioning, mice respond to activation of this visual engram population in a manner similar to visual presentation of fear cues. Cue-responsive neurons are selectively reactivated in V1 during post-conditioning sleep. Mimicking visual engram reactivation optogenetically leads to increased representation of the visual cue in V1. Optogenetic inhibition of the engram population during post-conditioning sleep disrupts consolidation of fear memory. We conclude that selective sleep-associated reactivation of learning-activated sensory populations serves as a necessary instructive mechanism for memory consolidation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin Siu ◽  
Justin Balsor ◽  
Sam Merlin ◽  
Frederick Federer ◽  
Alessandra Angelucci

AbstractThe mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


2000 ◽  
Vol 17 (1) ◽  
pp. 71-76 ◽  
Author(s):  
JOHN D. ALLISON ◽  
PETER MELZER ◽  
YUCHUAN DING ◽  
A.B. BONDS ◽  
VIVIEN A. CASAGRANDE

How neurons in the primary visual cortex (V1) of primates process parallel inputs from the magnocellular (M) and parvocellular (P) layers of the lateral geniculate nucleus (LGN) is not completely understood. To investigate whether signals from the two pathways are integrated in the cortex, we recorded contrast-response functions (CRFs) from 20 bush baby V1 neurons before, during, and after pharmacologically inactivating neural activity in either the contralateral LGN M or P layers. Inactivating the M layer reduced the responses of V1 neurons (n = 10) to all stimulus contrasts and significantly elevated (t = 8.15, P < 0.01) their average contrast threshold from 8.04 (± 4.1)% contrast to 22.46 (± 6.28)% contrast. M layer inactivation also significantly reduced (t = 4.06, P < 0.01) the average peak response amplitude. Inactivating the P layer did not elevate the average contrast threshold of V1 neurons (n = 10), but significantly reduced (t = 4.34, P < 0.01) their average peak response amplitude. These data demonstrate that input from the M pathway can account for the responses of V1 neurons to low stimulus contrasts and also contributes to responses to high stimulus contrasts. The P pathway appears to influence mainly the responses of V1 neurons to high stimulus contrasts. None of the cells in our sample, which included cells in all output layers of V1, appeared to receive input from only one pathway. These findings support the view that many V1 neurons integrate information about stimulus contrast carried by the LGN M and P pathways.


2018 ◽  
Author(s):  
J.J. Pattadkal ◽  
G. Mato ◽  
C. van Vreeswijk ◽  
N. J. Priebe ◽  
D. Hansel

SummaryWe study the connectivity principles underlying the emergence of orientation selectivity in primary visual cortex (V1) of mammals lacking an orientation map. We present a computational model in which random connectivity gives rise to orientation selectivity that matches experimental observations. It predicts that mouse V1 neurons should exhibit intricate receptive fields in the two-dimensional frequency domain, causing shift in orientation preferences with spatial frequency. We find evidence for these features in mouse V1 using calcium imaging and intracellular whole cell recordings.


Sign in / Sign up

Export Citation Format

Share Document