scholarly journals Primary Visual Cortex Activation Responses to Tactile Stimulation in Late-Blind Individuals with Retinitis Pigmentosa

2012 ◽  
Vol 12 (9) ◽  
pp. 1327-1327
Author(s):  
S. I. Cunningham ◽  
J. D. Weiland ◽  
P. Bao ◽  
B. S. Tjan
2020 ◽  
Author(s):  
Anna Seydell-Greenwald ◽  
Xiaoying Wang ◽  
Elissa Newport ◽  
Yanchao Bi ◽  
Ella Striem-Amit

AbstractCurrent accounts of neural plasticity emphasize the role of connectivity and conserved function in determining a neural tissue’s functional role even after atypical early experiences. However, in apparent conflict with this view, studies of congenitally blind individuals have also suggested that language activates primary visual cortex, with no evidence of major changes in anatomical connectivity that could explain this apparent drastic functional change in what is typically a low-level visual area. To reconcile what appears to be unprecedented functional reorganization in V1 with known accounts of plasticity limitations, we tested whether primary visual cortex also responds to spoken language in sighted individuals. We found that primary visual cortex was activated by comprehensible speech as compared to a reversed speech control task, in a left-lateralized and focal manner, in sighted individuals. Importantly, left V1 activation was also significant and comparable for abstract and concrete words, precluding a visual imagery account of such activation. Together these findings suggest that primary visual cortex responds to verbal information in the typically developed brain, potentially to predict visual input. This capability might be the basis for the strong V1 language activation observed in people born blind, re-affirming the notion that plasticity is guided by pre-existing connectivity and abilities in the intact brain.


2002 ◽  
Vol 87 (1) ◽  
pp. 589-607 ◽  
Author(s):  
H. Burton ◽  
A. Z. Snyder ◽  
T. E. Conturo ◽  
E. Akbudak ◽  
J. M. Ollinger ◽  
...  

Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string “######”. This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex.


2021 ◽  
Author(s):  
Edward H Silson ◽  
Andre D Gouws ◽  
Gordon E Legge ◽  
Antony B Morland

Braille reading and other tactile discrimination tasks recruit the visual cortex of both blind and normally sighted individuals undergoing short-term visual deprivation. Prior functional magnetic resonance imaging (fMRI) work in patient S, a visually impaired adult with the rare ability to read both highly magnified print visually and Braille by touch, found that foveal representations of S's visual cortex were recruited during tactile perception, whereas peripheral regions were recruited during visual perception. Here, we test the causal nature of tactile responses in the visual cortex of S by combining tactile and visual psychophysics with repetitive transcranial magnetic stimulation (rTMS). First, we replicate this prior fMRI work in S. Second, we demonstrate that transient disruption of S's foveal visual cortex has no measurable impact on S's tactile processing performance compared to that of healthy controls - a pattern not predicted by the fMRI results. Third, stimulation of foveal visual cortex maximally disrupted visual processing performance in both S and controls, suggesting the possibility of preserved visual function within S's foveal cortex. Finally, stimulation of somatosensory cortex induced the expected disruption to tactile processing performance in both S and controls. These data suggest that tactile responses in S's foveal representation reflect unmasking of latent connections between visual and somatosensory cortices and not behaviourally relevant cross-modal plasticity. Unlike studies in congenitally blind individuals, it is possible that the absence of complete visual loss in S has limited the degree of causally impactful cross-modal reorganisation.


Sign in / Sign up

Export Citation Format

Share Document