scholarly journals The Relative Role of Eyes, Eyebrows, and Eye Region in Face Recognition

2013 ◽  
Vol 13 (9) ◽  
pp. 410-410 ◽  
Author(s):  
C. Saavedra ◽  
P. Smith ◽  
J. Peissig
Perception ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 174-177
Author(s):  
Sarah Laurence ◽  
Jordyn Eyre ◽  
Ailsa Strathie

Expertise in familiar face recognition has been well-documented in several studies. Here, we examined the role of context using a surprise lecturer recognition test. Across two experiments, we found few students recognised their lecturer when they were unexpected, but accuracy was higher when the lecturer was preceded by a prompt. Our findings suggest that familiar face recognition can be poor in unexpected contexts.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1812
Author(s):  
Karol Augustowski ◽  
Józef Kukulak

The rate of bank retreat was measured using erosion pins on the alluvial banks of the rivers in the Podhale region (the boundary zone between Central and Outer Carpathians) during the hydrological year 2013/2014. During the winter half-year (November–April), the bank retreat was mainly caused by processes related to the freezing and thawing of the ground (swelling, creep, downfall). During the summer half-year (May–October), fluvial processes and mass movements such as lateral erosion, washing out, and sliding predominated. The share of fluvial processes in the total annual amount of bank retreat (71 cm on average) was 4 times greater than that of the frost phenomena. Erosion on bank surfaces by frost phenomena during the cold half-year was greatest (up to 38 cm) on the upper parts of banks composed of fine-grained alluvium, while fluvial erosion during the summer half-year (exceeding 80 cm) mostly affected the lower parts of the banks, composed of gravel. The precise calculation of the relative role of frost phenomena in the annual balance of bank erosion was precluded at some stations by the loss of erosion pins in the summer flood.


2002 ◽  
Vol 751 ◽  
Author(s):  
Qinglei Wang ◽  
Guoda D. Lian ◽  
Elizabeth C. Dickey

ABSTRACTSolute segregation to grain boundaries is a fundamental phenomenon in polycrystalline metal-oxide electroceramics that has enormous implications for the macroscopic dielectric behavior of the materials. This paper presents a systematic study of solute segregation in a model dielectric, titanium dioxide. We investigate the relative role of the electrostatic versus strain energy driving forces for segregation by studying yttrium-doped specimens. Through analytical transmission electron microscopy studies, we quantitatively determine the segregation behavior of the material. The measured Gibbsian interfacial excesses are compared to thermodynamic predictions.


2009 ◽  
Vol 52 (6) ◽  
pp. 855-868 ◽  
Author(s):  
DuanYang Xu ◽  
XiangWu Kang ◽  
ZhiLi Liu ◽  
DaFang Zhuang ◽  
JianJun Pan

Sign in / Sign up

Export Citation Format

Share Document