scholarly journals TMS over posterior parietal cortex disrupts the integration of initial hand position information into the reach plan

2010 ◽  
Vol 7 (9) ◽  
pp. 293-293
Author(s):  
M. Vesia ◽  
D. Henriques ◽  
X. Yan ◽  
L. Sergio ◽  
J. D. Crawford
2012 ◽  
Vol 108 (1) ◽  
pp. 187-199 ◽  
Author(s):  
Christopher A. Buneo ◽  
Richard A. Andersen

Previous findings suggest the posterior parietal cortex (PPC) contributes to arm movement planning by transforming target and limb position signals into a desired reach vector. However, the neural mechanisms underlying this transformation remain unclear. In the present study we examined the responses of 109 PPC neurons as movements were planned and executed to visual targets presented over a large portion of the reaching workspace. In contrast to previous studies, movements were made without concurrent visual and somatic cues about the starting position of the hand. For comparison, a subset of neurons was also examined with concurrent visual and somatic hand position cues. We found that single cells integrated target and limb position information in a very consistent manner across the reaching workspace. Approximately two-thirds of the neurons with significantly tuned activity (42/61 and 30/46 for left and right workspaces, respectively) coded targets and initial hand positions separably, indicating no hand-centered encoding, whereas the remaining one-third coded targets and hand positions inseparably, in a manner more consistent with the influence of hand-centered coordinates. The responses of both types of neurons were largely invariant with respect to the presence or absence of visual hand position cues, suggesting their corresponding coordinate frames and gain effects were unaffected by cue integration. The results suggest that the PPC uses a consistent scheme for computing reach vectors in different parts of the workspace that is robust to changes in the availability of somatic and visual cues about hand position.


2008 ◽  
Vol 100 (4) ◽  
pp. 2005-2014 ◽  
Author(s):  
Michael Vesia ◽  
Xiaogang Yan ◽  
Denise Y. Henriques ◽  
Lauren E. Sergio ◽  
J. D. Crawford

Posterior parietal cortex (PPC) has been implicated in the integration of visual and proprioceptive information for the planning of action. We previously reported that single-pulse transcranial magnetic stimulation (TMS) over dorsal–lateral PPC perturbs the early stages of spatial processing for memory-guided reaching. However, our data did not distinguish whether TMS disrupted the reach goal or the internal estimate of initial hand position needed to calculate the reach vector. To test between these hypotheses, we investigated reaching in six healthy humans during left and right parietal TMS while varying visual feedback of the movement. We reasoned that if TMS were disrupting the internal representation of hand position, visual feedback from the hand might still recalibrate this signal. We tested four viewing conditions: 1) final vision of hand position; 2) full vision of hand position; 3) initial and final vision of hand position; and 4) middle and final vision of hand position. During the final vision condition, left parietal stimulation significantly increased endpoint variability, whereas right parietal stimulation produced a significant leftward shift in both visual fields. However, these errors significantly decreased with visual feedback of the hand during both planning and control stages of the reach movement. These new findings demonstrate that 1) visual feedback of hand position during the planning and early execution of the reach can recalibrate the perturbed signal and, importantly, and 2) TMS over dorsal–lateral PPC does not disrupt the internal representation of the visual goal, but rather the reach vector, or more likely the sense of initial hand position that is used to calculate this vector.


2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

2018 ◽  
Author(s):  
Imogen M Kruse

The near-miss effect in gambling behaviour occurs when an outcome which is close to a win outcome invigorates gambling behaviour notwithstanding lack of associated reward. In this paper I postulate that the processing of concepts which are deemed controllable is rooted in neurological machinery located in the posterior parietal cortex specialised for the processing of objects which are immediately actionable or controllable because they are within reach. I theorise that the use of a common machinery facilitates spatial influence on the perception of concepts such that the win outcome which is 'almost complete' is perceived as being 'almost within reach'. The perceived realisability of the win increases subjective reward probability and the associated expected action value which impacts decision-making and behaviour. This novel hypothesis is the first to offer a neurological model which can comprehensively explain many empirical findings associated with the near-miss effect as well as other gambling phenomena such as the ‘illusion of control’. Furthermore, when extended to other compulsive behaviours such as drug addiction, the model can offer an explanation for continued drug-seeking following devaluation and for the increase in cravings in response to perceived opportunity to self-administer, neither of which can be explained by simple reinforcement models alone. This paper therefore provides an innovative and unifying perspective for the study and treatment of behavioural and substance addictions.


Sign in / Sign up

Export Citation Format

Share Document