Transcranial Magnetic Stimulation Over Human Dorsal–Lateral Posterior Parietal Cortex Disrupts Integration of Hand Position Signals Into the Reach Plan

2008 ◽  
Vol 100 (4) ◽  
pp. 2005-2014 ◽  
Author(s):  
Michael Vesia ◽  
Xiaogang Yan ◽  
Denise Y. Henriques ◽  
Lauren E. Sergio ◽  
J. D. Crawford

Posterior parietal cortex (PPC) has been implicated in the integration of visual and proprioceptive information for the planning of action. We previously reported that single-pulse transcranial magnetic stimulation (TMS) over dorsal–lateral PPC perturbs the early stages of spatial processing for memory-guided reaching. However, our data did not distinguish whether TMS disrupted the reach goal or the internal estimate of initial hand position needed to calculate the reach vector. To test between these hypotheses, we investigated reaching in six healthy humans during left and right parietal TMS while varying visual feedback of the movement. We reasoned that if TMS were disrupting the internal representation of hand position, visual feedback from the hand might still recalibrate this signal. We tested four viewing conditions: 1) final vision of hand position; 2) full vision of hand position; 3) initial and final vision of hand position; and 4) middle and final vision of hand position. During the final vision condition, left parietal stimulation significantly increased endpoint variability, whereas right parietal stimulation produced a significant leftward shift in both visual fields. However, these errors significantly decreased with visual feedback of the hand during both planning and control stages of the reach movement. These new findings demonstrate that 1) visual feedback of hand position during the planning and early execution of the reach can recalibrate the perturbed signal and, importantly, and 2) TMS over dorsal–lateral PPC does not disrupt the internal representation of the visual goal, but rather the reach vector, or more likely the sense of initial hand position that is used to calculate this vector.

2000 ◽  
Vol 84 (3) ◽  
pp. 1677-1680 ◽  
Author(s):  
Paul Van Donkelaar ◽  
Ji-Hang Lee ◽  
Anthony S. Drew

Recent neurophysiological studies have started to shed some light on the cortical areas that contribute to eye-hand coordination. In the present study we investigated the role of the posterior parietal cortex (PPC) in this process in normal, healthy subjects. This was accomplished by delivering single pulses of transcranial magnetic stimulation (TMS) over the PPC to transiently disrupt the putative contribution of this area to the processing of information related to eye-hand coordination. Subjects made open-loop pointing movements accompanied by saccades of the same required amplitude or by saccades that were substantially larger. Without TMS the hand movement amplitude was influenced by the amplitude of the corresponding saccade; hand movements accompanied by larger saccades were larger than those accompanied by smaller saccades. When TMS was applied over the left PPC just prior to the onset of the saccade, a marked reduction in the saccadic influence on manual motor output was observed. TMS delivered at earlier or later periods during the response had no effect. Taken together, these data suggest that the PPC integrates signals related to saccade amplitude with limb movement information just prior to the onset of the saccade.


2020 ◽  
Vol 31 (1) ◽  
pp. 267-280
Author(s):  
Rossella Breveglieri ◽  
Annalisa Bosco ◽  
Sara Borgomaneri ◽  
Alessia Tessari ◽  
Claudio Galletti ◽  
...  

Abstract Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A–hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.


2009 ◽  
Vol 105 (7) ◽  
pp. 07B321 ◽  
Author(s):  
Masakuni Iwahashi ◽  
Yohei Koyama ◽  
Akira Hyodo ◽  
Takehito Hayami ◽  
Shoogo Ueno ◽  
...  

2006 ◽  
Vol 96 (6) ◽  
pp. 3016-3027 ◽  
Author(s):  
Michael Vesia ◽  
Jachin A. Monteon ◽  
Lauren E. Sergio ◽  
J. D. Crawford

Dorsal posterior parietal cortex (PPC) has been implicated through single-unit recordings, neuroimaging data, and studies of brain-damaged humans in the spatial guidance of reaching and pointing movements. The present study examines the causal effect of single-pulse transcranial magnetic stimulation (TMS) over the left and right dorsal posterior parietal cortex during a memory-guided “reach-to-touch” movement task in six human subjects. Stimulation of the left parietal hemisphere significantly increased endpoint variability, independent of visual field, with no horizontal bias. In contrast, right parietal stimulation did not increase variability, but instead produced a significantly systematic leftward directional shift in pointing (contralateral to stimulation site) in both visual fields. Furthermore, the same lateralized pattern persisted with left-hand movement, suggesting that these aspects of parietal control of pointing movements are spatially fixed. To test whether the right parietal TMS shift occurs in visual or motor coordinates, we trained subjects to point correctly to optically reversed peripheral targets, viewed through a left–right Dove reversing prism. After prism adaptation, the horizontal pointing direction for a given visual target reversed, but the direction of shift during right parietal TMS did not reverse. Taken together, these data suggest that induction of a focal current reveals a hemispheric asymmetry in the early stages of the putative spatial processing in PPC. These results also suggest that a brief TMS pulse modifies the output of the right PPC in motor coordinates downstream from the adapted visuomotor reversal, rather than modifying the upstream visual coordinates of the memory representation.


Sign in / Sign up

Export Citation Format

Share Document