scholarly journals Fixational eye movements following concussion

2021 ◽  
Vol 21 (13) ◽  
pp. 11
Author(s):  
Bianca T. Leonard ◽  
Anthony P. Kontos ◽  
Gregory F. Marchetti ◽  
Min Zhang ◽  
Shawn R. Eagle ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


2019 ◽  
Vol 19 (10) ◽  
pp. 145a
Author(s):  
Janis Intoy ◽  
Michele A Cox ◽  
Michele Rucci

2013 ◽  
Vol 76 ◽  
pp. 31-42 ◽  
Author(s):  
L. Thaler ◽  
A.C. Schütz ◽  
M.A. Goodale ◽  
K.R. Gegenfurtner

2007 ◽  
Vol 97 (5) ◽  
pp. 3439-3448 ◽  
Author(s):  
Yamei Tang ◽  
Alan Saul ◽  
Moshe Gur ◽  
Stephanie Goei ◽  
Elsie Wong ◽  
...  

Studies of visual function in behaving subjects require that stimuli be positioned reliably on the retina in the presence of eye movements. Fixational eye movements scatter stimuli about the retina, inflating estimates of receptive field dimensions, reducing estimates of peak responses, and blurring maps of receptive field subregions. Scleral search coils are frequently used to measure eye position, but their utility for correcting the effects of fixational eye movements on receptive field maps has been questioned. Using eye coils sutured to the sclera and preamplifiers configured to minimize cable artifacts, we reexamined this issue in two rhesus monkeys. During repeated fixation trials, the eye position signal was used to adjust the stimulus position, compensating for eye movements and correcting the stimulus position to place it at the desired location on the retina. Estimates of response magnitudes and receptive field characteristics in V1 and in LGN were obtained in both compensated and uncompensated conditions. Receptive fields were narrower, with steeper borders, and response amplitudes were higher when eye movement compensation was used. In sum, compensating for eye movements facilitated more precise definition of the receptive field. We also monitored horizontal vergence over long sequences of fixation trials and found the variability to be low, as expected for this precise behavior. Our results imply that eye coil signals can be highly accurate and useful for optimizing visual physiology when rigorous precautions are observed.


2018 ◽  
Vol 59 (13) ◽  
pp. 5408
Author(s):  
Jonathan Denniss ◽  
Chris Scholes ◽  
Paul V. McGraw ◽  
Se-Ho Nam ◽  
Neil W. Roach

Sign in / Sign up

Export Citation Format

Share Document