scholarly journals Behavioral and neural analysis of the development of shape sensitivity in macaques

2021 ◽  
Vol 21 (9) ◽  
pp. 2432
Author(s):  
Carla L. Rodriguez-Deliz ◽  
Gerick M. Lee ◽  
Najib J. Majaj ◽  
J. Anthony Movshon ◽  
Lynne Kiorpes
Keyword(s):  
2019 ◽  
Vol 31 (6) ◽  
pp. 821-836 ◽  
Author(s):  
Elliot Collins ◽  
Erez Freud ◽  
Jana M. Kainerstorfer ◽  
Jiaming Cao ◽  
Marlene Behrmann

Although shape perception is primarily considered a function of the ventral visual pathway, previous research has shown that both dorsal and ventral pathways represent shape information. Here, we examine whether the shape-selective electrophysiological signals observed in dorsal cortex are a product of the connectivity to ventral cortex or are independently computed. We conducted multiple EEG studies in which we manipulated the input parameters of the stimuli so as to bias processing to either the dorsal or ventral visual pathway. Participants viewed displays of common objects with shape information parametrically degraded across five levels. We measured shape sensitivity by regressing the amplitude of the evoked signal against the degree of stimulus scrambling. Experiment 1, which included grayscale versions of the stimuli, served as a benchmark establishing the temporal pattern of shape processing during typical object perception. These stimuli evoked broad and sustained patterns of shape sensitivity beginning as early as 50 msec after stimulus onset. In Experiments 2 and 3, we calibrated the stimuli such that visual information was delivered primarily through parvocellular inputs, which mainly project to the ventral pathway, or through koniocellular inputs, which mainly project to the dorsal pathway. In the second and third experiments, shape sensitivity was observed, but in distinct spatio-temporal configurations from each other and from that elicited by grayscale inputs. Of particular interest, in the koniocellular condition, shape selectivity emerged earlier than in the parvocellular condition. These findings support the conclusion of distinct dorsal pathway computations of object shape, independent from the ventral pathway.


Author(s):  
Boo Youn Lee

A direct differentiation method is presented for the shape design sensitivity analysis of axisymmetric thermal conducting solids. Based purely on the standard boundary integral equation (BIE) formulation, a new BIE is derived using the material derivative concept. Design derivatives in terms of shape change are directly calculated by solving the derived BIE. The present direct method has a computational advantage over the adjoint variable method, in the sense that it avoids the problem of solving for the adjoint system with the singular boundary condition. Numerical accuracy of the method is studied through three examples. The sensitivities by the present method are compared with analytic sensitivities for two problems of a hollow cylinder and a hollow sphere, and are then compared with those by finite differences for a thermal diffuser problem. As a practical application to numerical optimization, an optimal shape of the thermal diffuser to minimize the weight under a prescribed constraint is found by use of an optimization routine.


Author(s):  
Bartlomiej Blachowski

The present study deals with a comprehensive approach for damage identification of spatial truss structures. The novelty of the proposed approach consists of a three-level analysis. First, sensitivity of assumed modal characteristics is calculated. Second, natural frequency sensitivity is used to determine hardly identifiable structural parameters and mode shape sensitivity is applied to select damage-sensitive locations of sensors. Third, two sparsity constrained optimization algorithms are tested towards efficient identification of applied damage scenarios. These two algorithms are based on ℓ1-norm minimization and non-negative least square (NNLS) solution.Performances of both proposed algorithms have been compared in two realistic case studies: the first one concerned a three-dimensional truss girder with 61 structural parameters and the second one was devoted to an upper-deck arch bridge composed of 416 steel members.


Sign in / Sign up

Export Citation Format

Share Document