Origin of Pacific Multidecadal Variability in Community Climate System Model, Version 3 (CCSM3): A Combined Statistical and Dynamical Assessment

2008 ◽  
Vol 21 (1) ◽  
pp. 114-133 ◽  
Author(s):  
Yafang Zhong ◽  
Zhengyu Liu ◽  
R. Jacob

Abstract Observations indicate that Pacific multidecadal variability (PMV) is a basinwide phenomenon with robust tropical–extratropical linkage, though its genesis remains the topic of much debate. In this study, the PMV in the Community Climate System Model, version 3 (CCSM3) is investigated with a combined statistical and dynamical approach. In agreement with observations, the modeled North Pacific climate system undergoes coherent multidecadal atmospheric and oceanic variability of a characteristic quasi-50-yr time scale, with apparent connections to the tropical Indo-Pacific. The statistical assessment based on the CCSM3 control integration cannot exclusively identify the origin of the modeled multidecadal linkage, while confirming the two-way interactions between the tropical and extratropical Pacific. Two sensitivity experiments are performed to further investigate the origin of the PMV. With the atmosphere decoupled from the tropical ocean, multidecadal variability in the North Pacific climate remains outstanding. In contrast, without midlatitude oceanic feedback to atmosphere, an experiment shows much reduced multidecadal power in both extratropical atmosphere and surface ocean; moreover, the tropical multidecadal variability seen in the CCSM3 control run virtually disappears. The combined statistical and dynamical assessment supports a midlatitude coupled origin for the PMV, which can be described as follows: extratropical large-scale air–sea interaction gives rise to multidecadal variability in the North Pacific region; this extratropical signal then imprints itself in the tropical Indo–Pacific climate system, through a robust tropical–extratropical teleconnection. This study highlights a midlatitude origin of multidecadal tropical–extratropical linkage in the Pacific in the CCSM3.

2012 ◽  
Vol 25 (8) ◽  
pp. 2622-2651 ◽  
Author(s):  
Clara Deser ◽  
Adam S. Phillips ◽  
Robert A. Tomas ◽  
Yuko M. Okumura ◽  
Michael A. Alexander ◽  
...  

Abstract This study presents an overview of the El Niño–Southern Oscillation (ENSO) phenomenon and Pacific decadal variability (PDV) simulated in a multicentury preindustrial control integration of the NCAR Community Climate System Model version 4 (CCSM4) at nominal 1° latitude–longitude resolution. Several aspects of ENSO are improved in CCSM4 compared to its predecessor CCSM3, including the lengthened period (3–6 yr), the larger range of amplitude and frequency of events, and the longer duration of La Niña compared to El Niño. However, the overall magnitude of ENSO in CCSM4 is overestimated by ~30%. The simulated ENSO exhibits characteristics consistent with the delayed/recharge oscillator paradigm, including correspondence between the lengthened period and increased latitudinal width of the anomalous equatorial zonal wind stress. Global seasonal atmospheric teleconnections with accompanying impacts on precipitation and temperature are generally well simulated, although the wintertime deepening of the Aleutian low erroneously persists into spring. The vertical structure of the upper-ocean temperature response to ENSO in the north and south Pacific displays a realistic seasonal evolution, with notable asymmetries between warm and cold events. The model shows evidence of atmospheric circulation precursors over the North Pacific associated with the “seasonal footprinting mechanism,” similar to observations. Simulated PDV exhibits a significant spectral peak around 15 yr, with generally realistic spatial pattern and magnitude. However, PDV linkages between the tropics and extratropics are weaker than observed.


2012 ◽  
Vol 25 (9) ◽  
pp. 3071-3095 ◽  
Author(s):  
Peter J. Lawrence ◽  
Johannes J. Feddema ◽  
Gordon B. Bonan ◽  
Gerald A. Meehl ◽  
Brian C. O’Neill ◽  
...  

To assess the climate impacts of historical and projected land cover change in the Community Climate System Model, version 4 (CCSM4), new time series of transient Community Land Model, version 4 (CLM4) plant functional type (PFT) and wood harvest parameters have been developed. The new parameters capture the dynamics of the Coupled Model Intercomparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005 and for the four representative concentration pathway (RCP) scenarios from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 reveals that the model produced a historical cumulative land use flux of 127.7 PgC from 1850 to 2005, which is in general agreement with other global estimates of 156 PgC for the same period. The biogeophysical impacts of the transient land cover change parameters were cooling of the near-surface atmosphere over land by −0.1°C, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was counteracted by decreasing snow albedo from black carbon deposition and high-latitude warming. The future CCSM4 RCP simulations showed that the CLM4 transient PFT parameters can be used to represent a wide range of land cover change scenarios. In the reforestation scenario of RCP 4.5, CCSM4 simulated a drawdown of 67.3 PgC from the atmosphere into the terrestrial ecosystem and product pools. By contrast the RCP 8.5 scenario with deforestation and high wood harvest resulted in the release of 30.3 PgC currently stored in the ecosystem.


2016 ◽  
Vol 9 (11) ◽  
pp. 3859-3873 ◽  
Author(s):  
Vidya Varma ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. Numerical simulations provide a considerable aid in studying past climates. Out of the various approaches taken in designing numerical climate experiments, transient simulations have been found to be the most optimal when it comes to comparison with proxy data. However, multi-millennial or longer simulations using fully coupled general circulation models are computationally very expensive such that acceleration techniques are frequently applied. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model version 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model–data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere.


2007 ◽  
Vol 20 (6) ◽  
pp. 1053-1070 ◽  
Author(s):  
Ching-Yee Chang ◽  
James A. Carton ◽  
Semyon A. Grodsky ◽  
Sumant Nigam

Abstract The Community Climate System Model version 3 (CCSM3) has a dipolelike pattern with a cold bias in the northern Tropics and a warm bias in the southeastern Tropics, which is reminiscent of the observed pattern of climate variability in boreal spring. Along the equator, in contrast, in boreal spring CCSM3 exhibits striking westerly winds with easterly winds in the upper troposphere, in turn reminiscent of the observed pattern of climate variability in boreal summer. The westerly winds cause a deepening of the eastern thermocline that keeps the east warm despite enhanced coastal upwelling. Thus, the bias in the seasonal cycle of the coupled model appears to project at least partially onto the spatial patterns of natural climate variability in this sector. Information about the origin of the bias in CCSM3 is deduced from a comparison of CCSM3 with a simulation using specified historical SST to force the Community Atmospheric Model version 3 (CAM3). The patterns of bias in CAM3 resemble those apparent in CCSM3, including the appearance of substantially intensified subtropical bands of sea level pressure (SLP), indicating that the problem may be traced to difficulties in the atmospheric component model. Positive SLP bias also appears in the western tropical region, which may be related to deficient Amazonian precipitation. The positive SLP bias seems to be the cause of the anomalous westerly trade winds in boreal spring, and those in turn appear to be responsible for the anomalous deepening of the thermocline in the southeastern Tropics.


2006 ◽  
Vol 19 (11) ◽  
pp. 2122-2143 ◽  
Author(s):  
William D. Collins ◽  
Cecilia M. Bitz ◽  
Maurice L. Blackmon ◽  
Gordon B. Bonan ◽  
Christopher S. Bretherton ◽  
...  

Abstract The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.


Sign in / Sign up

Export Citation Format

Share Document