scholarly journals Development of the HIRS Outgoing Longwave Radiation Climate Dataset

2007 ◽  
Vol 24 (12) ◽  
pp. 2029-2047 ◽  
Author(s):  
Hai-Tien Lee ◽  
Arnold Gruber ◽  
Robert G. Ellingson ◽  
Istvan Laszlo

Abstract The Advanced Very High Resolution Radiometer (AVHRR) outgoing longwave radiation (OLR) product, which NOAA has been operationally generating since 1979, is a very long data record that has been used in many applications, yet past studies have shown its limitations and several algorithm-related deficiencies. Ellingson et al. have developed the multispectral algorithm that largely improved the accuracy of the narrowband-estimated OLR as well as eliminated the problems in AVHRR. NOAA has been generating High Resolution Infrared Radiation Sounder (HIRS) OLR operationally since September 1998. In recognition of the need for a continuous and long OLR data record that would be consistent with the earth radiation budget broadband measurements in the National Polar-orbiting Operational Environmental Satellite System (NPOESS) era, and to provide a climate data record for global change studies, a vigorous reprocessing of the HIRS radiance for OLR derivation is necessary. This paper describes the development of the new HIRS OLR climate dataset. The HIRS level 1b data from the entire Television and Infrared Observation Satellite N-series (TIROS-N) satellites have been assembled. A new radiance calibration procedure was applied to obtain more accurate and consistent HIRS radiance measurements. The regression coefficients of the HIRS OLR algorithm for all satellites were rederived from calculations using an improved radiative transfer model. Intersatellite calibrations were performed to remove possible discontinuity in the HIRS OLR product from different satellites. A set of global monthly diurnal models was constructed consistent with the HIRS OLR retrievals to reduce the temporal sampling errors and to alleviate an orbital-drift-induced artificial trend. These steps significantly improved the accuracy, continuity, and uniformity of the HIRS monthly mean OLR time series. As a result, the HIRS OLR shows a comparable stability as in the Earth Radiation Budget Satellite (ERBS) nonscanner OLR measurements. HIRS OLR has superb agreement with the broadband observations from Earth Radiation Budget Experiment (ERBE) and Clouds and the Earth’s Radiant Energy System (CERES) in the ENSO-monitoring regions. It shows compatible ENSO-monitoring capability with the AVHRR OLR. Globally, HIRS OLR agrees with CERES with an accuracy to within 2 W m−2 and a precision of about 4 W m−2. The correlation coefficient between HIRS and CERES global monthly mean is 0.997. Regionally, HIRS OLR agrees with CERES to within 3 W m−2 with precisions better than 3 W m−2 in most places. HIRS OLR could be used for constructing climatology for applications that plan to use NPOESS ERBS and previously used AVHRR OLR observations. The HIRS monthly mean OLR data have high accuracy and precision with respect to the broadband observations of ERBE and CERES. It can be used as an independent validation data source. The uniformity and continuity of HIRS OLR time series suggest that it could be used as a reliable transfer reference for the discontinuous broadband measurements from ERBE, CERES, and ERBS.

2003 ◽  
Vol 60 (13) ◽  
pp. 1529-1542 ◽  
Author(s):  
G. Louis Smith ◽  
David A. Rutan

Abstract The diurnal cycle of outgoing longwave radiation (OLR) from the earth is analyzed by decomposing satellite observations into a set of empirical orthogonal functions (EOFs). The observations are from the Earth Radiation Budget Experiment (ERBE) scanning radiometer aboard the Earth Radiation Budget Satellite, which had a precessing orbit with 57° inclination. The diurnal cycles of land and ocean differ considerably. The first EOF for land accounts for 73% to 85% of the variance, whereas the first EOF for ocean accounts for only 16% to 20% of the variance, depending on season. The diurnal cycle for land is surprisingly symmetric about local noon for the first EOF, which is approximately a half-sine during day and flat at night. The second EOF describes lead–lag effects due to surface heating and cloud formation. For the ocean, the first EOF and second EOF are similar to that of land, except for spring, when the first ocean EOF is a semidiurnal cycle and the second ocean EOF is the half-sine. The first EOF for land has a daytime peak of about 50 W m−2, whereas the first ocean EOF peaks at about 25 W m−2. The geographical and seasonal patterns of OLR diurnal cycle provide insights into the interaction of radiation with the atmosphere and surface and are useful for validating and upgrading circulation models.


2018 ◽  
Vol 10 (10) ◽  
pp. 1539 ◽  
Author(s):  
Steven Dewitte ◽  
Nicolas Clerbaux

The Earth Radiation Budget (ERB) at the top of the atmosphere quantifies how the earth gains energy from the sun and loses energy to space. Its monitoring is of fundamental importance for understanding ongoing climate change. In this paper, decadal changes of the Outgoing Longwave Radiation (OLR) as measured by the Clouds and Earth’s Radiant Energy System from 2000 to 2018, the Earth Radiation Budget Experiment from 1985 to 1998, and the High-resolution Infrared Radiation Sounder from 1985 to 2018 are analysed. The OLR has been rising since 1985, and correlates well with the rising global temperature. An observational estimate of the derivative of the OLR with respect to temperature of 2.93 +/− 0.3 W/m 2 K is obtained. The regional patterns of the observed OLR change from 1985–2000 to 2001–2017 show a warming pattern in the Northern Hemisphere in particular in the Arctic, as well as tropical cloudiness changes related to a strengthening of La Niña.


2021 ◽  
Author(s):  
Peter Pilewskie ◽  
Maria Hakuba ◽  

<p>The NASA Libera Mission, named for the daughter of Ceres in Roman mythology, will provide continuity of the Clouds and the Earth’s Radiant Energy System (CERES) Earth radiation budget (ERB) observations from space. Libera’s  attributes enable a seamless extension of the ERB climate data record. Libera will acquire integrated radiance over the CERES FM6-heritage broad spectral bands in the shortwave (0.3 to 5 μm), longwave (5 to 50 μm) and total (0.3 to beyond 100 μm) and adds a split-shortwave band (0.7 to 5 μm) to provide deeper insight into shortwave energy deposition. Libera leverages advanced detector technologies using vertically aligned black-carbon nanotubes with closed-loop electrical substitution radiometry to achieve radiometric uncertainty of approximately 0.2%. Libera will also employ a wide field-of-view camera to provide scene context and explore pathways for separating future ERB missions from complex imagers.</p><p>The Libera science objectives associated with continuity and extension of the ERB data record are to identify and quantify processes responsible for ERB variability on various time scales. Beyond data continuity, Libera’s new and enhanced observational capabilities will advance our understanding of spatiotemporal variations of radiative energy flow in the visible and and near-infrared spectral regions. They will also enable the rapid development of angular distribution models to facilitate near-IR and visible radiance-to-irradiance conversion.</p>


2006 ◽  
Vol 19 (16) ◽  
pp. 4028-4040 ◽  
Author(s):  
Takmeng Wong ◽  
Bruce A. Wielicki ◽  
Robert B. Lee ◽  
G. Louis Smith ◽  
Kathryn A. Bush ◽  
...  

Abstract This paper gives an update on the observed decadal variability of the earth radiation budget (ERB) using the latest altitude-corrected Earth Radiation Budget Experiment (ERBE)/Earth Radiation Budget Satellite (ERBS) Nonscanner Wide Field of View (WFOV) instrument Edition3 dataset. The effects of the altitude correction are to modify the original reported decadal changes in tropical mean (20°N to 20°S) longwave (LW), shortwave (SW), and net radiation between the 1980s and the 1990s from 3.1, −2.4, and −0.7 to 1.6, −3.0, and 1.4 W m−2, respectively. In addition, a small SW instrument drift over the 15-yr period was discovered during the validation of the WFOV Edition3 dataset. A correction was developed and applied to the Edition3 dataset at the data user level to produce the WFOV Edition3_Rev1 dataset. With this final correction, the ERBS Nonscanner-observed decadal changes in tropical mean LW, SW, and net radiation between the 1980s and the 1990s now stand at 0.7, −2.1, and 1.4 W m−2, respectively, which are similar to the observed decadal changes in the High-Resolution Infrared Radiometer Sounder (HIRS) Pathfinder OLR and the International Satellite Cloud Climatology Project (ISCCP) version FD record but disagree with the Advanced Very High Resolution Radiometer (AVHRR) Pathfinder ERB record. Furthermore, the observed interannual variability of near-global ERBS WFOV Edition3_Rev1 net radiation is found to be remarkably consistent with the latest ocean heat storage record for the overlapping time period of 1993 to 1999. Both datasets show variations of roughly 1.5 W m−2 in planetary net heat balance during the 1990s.


Sign in / Sign up

Export Citation Format

Share Document