scholarly journals A Regional Ensemble Prediction System Based on Moist Targeted Singular Vectors and Stochastic Parameter Perturbations

2008 ◽  
Vol 136 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Xiaoli Li ◽  
Martin Charron ◽  
Lubos Spacek ◽  
Guillem Candille

Abstract A regional ensemble prediction system (REPS) with the limited-area version of the Canadian Global Environmental Multiscale (GEM) model at 15-km horizontal resolution is developed and tested. The total energy norm singular vectors (SVs) targeted over northeastern North America are used for initial and boundary perturbations. Two SV perturbation strategies are tested: dry SVs with dry simplified physics and moist SVs with simplified physics, including stratiform condensation and convective precipitation as well as dry processes. Model physics uncertainties are partly accounted for by stochastically perturbing two parameters: the threshold vertical velocity in the trigger function of the Kain–Fritsch deep convection scheme, and the threshold humidity in the Sundqvist explicit scheme. The perturbations are obtained from first-order Markov processes. Short-range ensemble forecasts in summer with 16 members are performed for five different experiments. The experiments employ different perturbation and piloting strategies, and two different surface schemes. Verification focuses on quantitative precipitation forecasts and is done using a range of probabilistic measures. Results indicate that using moist SVs instead of dry SVs has a stronger impact on precipitation than on dynamical fields. Forecast skill for precipitation is greatly influenced by the dominant synoptic weather systems. For stratiform precipitation caused by strong baroclinic systems, the forecast skill is improved in the moist SV experiments relative to the dry SV experiments. For convective precipitation rates in the range 15–50 mm (24 h)−1 produced by weak synoptic baroclinic systems, all experiments exhibit noticeably poorer forecast skills. Skill improvements due to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) surface scheme and stochastic perturbations are also observed.

2013 ◽  
Vol 17 (6) ◽  
pp. 2107-2120 ◽  
Author(s):  
S. Davolio ◽  
M. M. Miglietta ◽  
T. Diomede ◽  
C. Marsigli ◽  
A. Montani

Abstract. Numerical weather prediction models can be coupled with hydrological models to generate streamflow forecasts. Several ensemble approaches have been recently developed in order to take into account the different sources of errors and provide probabilistic forecasts feeding a flood forecasting system. Within this framework, the present study aims at comparing two high-resolution limited-area meteorological ensembles, covering short and medium range, obtained via different methodologies, but implemented with similar number of members, horizontal resolution (about 7 km), and driving global ensemble prediction system. The former is a multi-model ensemble, based on three mesoscale models (BOLAM, COSMO, and WRF), while the latter, following a single-model approach, is the operational ensemble forecasting system developed within the COSMO consortium, COSMO-LEPS (limited-area ensemble prediction system). The meteorological models are coupled with a distributed rainfall-runoff model (TOPKAPI) to simulate the discharge of the Reno River (northern Italy), for a recent severe weather episode affecting northern Apennines. The evaluation of the ensemble systems is performed both from a meteorological perspective over northern Italy and in terms of discharge prediction over the Reno River basin during two periods of heavy precipitation between 29 November and 2 December 2008. For each period, ensemble performance has been compared at two different forecast ranges. It is found that, for the intercomparison undertaken in this specific study, both mesoscale model ensembles outperform the global ensemble for application at basin scale. Horizontal resolution is found to play a relevant role in modulating the precipitation distribution. Moreover, the multi-model ensemble provides a better indication concerning the occurrence, intensity and timing of the two observed discharge peaks, with respect to COSMO-LEPS. This seems to be ascribable to the different behaviour of the involved meteorological models. Finally, a different behaviour comes out at different forecast ranges. For short ranges, the impact of boundary conditions is weaker and the spread can be mainly attributed to the different characteristics of the models. At longer forecast ranges, the similar behaviour of the multi-model members forced by the same large-scale conditions indicates that the systems are governed mainly by the boundary conditions, although the different limited area models' characteristics may still have a non-negligible impact.


2009 ◽  
Vol 13 (7) ◽  
pp. 1031-1043 ◽  
Author(s):  
S. Jaun ◽  
B. Ahrens

Abstract. Medium range hydrological forecasts in mesoscale catchments are only possible with the use of hydrological models driven by meteorological forecasts, which in particular contribute quantitative precipitation forecasts (QPF). QPFs are accompanied by large uncertainties, especially for longer lead times, which are propagated within the hydrometeorological model system. To deal with this limitation of predictability, a probabilistic forecasting system is tested, which is based on a hydrological-meteorological ensemble prediction system. The meteorological component of the system is the operational limited-area ensemble prediction system COSMO-LEPS that downscales the global ECMWF ensemble to a horizontal resolution of 10 km, while the hydrological component is based on the semi-distributed hydrological model PREVAH with a spatial resolution of 500 m. Earlier studies have mostly addressed the potential benefits of hydrometeorological ensemble systems in short case studies. Here we present an analysis of hydrological ensemble hindcasts for two years (2005 and 2006). It is shown that the ensemble covers the uncertainty during different weather situations with appropriate spread. The ensemble also shows advantages over a corresponding deterministic forecast, even under consideration of an artificial spread.


2009 ◽  
Vol 6 (2) ◽  
pp. 1843-1877 ◽  
Author(s):  
S. Jaun ◽  
B. Ahrens

Abstract. Medium range hydrological forecasts in mesoscale catchments are only possible with the use of hydrological models driven by meteorological forecasts, which in particular contribute quantitative precipitation forecasts (QPF). QPFs are accompanied by large uncertainties, especially for longer lead times, which are propagated within the hydrometeorological model system. To deal with this limitation of predictability, a probabilistic forecasting system is tested, which is based on a hydrological-meteorological ensemble prediction system. The meteorological component of the system is the operational limited-area ensemble prediction system COSMO-LEPS that downscales the global ECMWF ensemble to a horizontal resolution of 10 km, while the hydrological component is based on the semi-distributed hydrological model PREVAH with a spatial resolution of 500 m. Earlier studies have mostly addressed the potential benefits of hydrometeorological ensemble systems in short case studies. Here we present an analysis of hydrological ensemble hindcasts for two years (2005 and 2006). It is shown that the ensemble covers the uncertainty during different weather situations with an appropriate spread-skill relationship. The ensemble also shows advantages over a corresponding deterministic forecast, even under consideration of an artificial spread.


2011 ◽  
Vol 11 (11) ◽  
pp. 30457-30485 ◽  
Author(s):  
P. Groenemeijer ◽  
G. C. Craig

Abstract. The stochastic Plant-Craig scheme for deep convection was implemented in the COSMO mesoscale model and used for ensemble forecasting. Ensembles consisting of 100 48 h forecasts at 7 km horizontal resolution were generated for a 2000 × 2000 km domain covering central Europe. Forecasts were made for seven case studies and characterized by different large-scale meteorological environments. Each 100 member ensemble consisted of 10 groups of 10 members, with each group driven by boundary and initial conditions from a selected member from the global ECMWF Ensemble Prediction System. The precipitation variability within and among these groups of members was computed, and it was found that the relative contribution to the ensemble variance introduced by the stochastic convection scheme was substantial, amounting to as much as 76% of the total variance in the ensemble in one of the studied cases. The impact of the scheme was not confined to the grid scale, and typically contributed 25–50% of the total variance even after the precipitation fields had been smoothed to a resolution of 35 km. The variability of precipitation introduced by the scheme was approximately proportional to the total amount of convection that occurred, while the variability due to large-scale conditions changed from case to case, being highest in cases exhibiting strong mid-tropospheric flow and pronounced meso- to synoptic scale vorticity extrema. The stochastic scheme was thus found to be an important source of variability in precipitation cases of weak large-scale flow lacking strong vorticity extrema, but high convective activity.


2009 ◽  
Vol 137 (4) ◽  
pp. 1480-1492 ◽  
Author(s):  
Frédéric Vitart ◽  
Franco Molteni

Abstract The 15-member ensembles of 46-day dynamical forecasts starting on each 15 May from 1991 to 2007 have been produced, using the ECMWF Variable Resolution Ensemble Prediction System monthly forecasting system (VarEPS-monthy). The dynamical model simulates a realistic interannual variability of Indian precipitation averaged over the month of June. It also displays some skill to predict Indian precipitation averaged over pentads up to a lead time of about 30 days. This skill exceeds the skill of the ECMWF seasonal forecasting System 3 starting on 1 June. Sensitivity experiments indicate that this is likely due to the higher horizontal resolution of VarEPS-monthly. Another series of sensitivity experiments suggests that the ocean–atmosphere coupling has an important impact on the skill of the monthly forecasting system to predict June rainfall over India.


2003 ◽  
Vol 10 (3) ◽  
pp. 261-274 ◽  
Author(s):  
A. Montani ◽  
C. Marsigli ◽  
F. Nerozzi ◽  
T. Paccagnella ◽  
S. Tibaldi ◽  
...  

Abstract. The predictability of the flood event affecting Soverato (Southern Italy) in September 2000 is investigated by considering three different configurations of ECMWF ensemble: the operational Ensemble Prediction System (EPS), the targeted EPS and a high-resolution version of EPS. For each configuration, three successive runs of ECMWF ensemble with the same verification time are grouped together so as to generate a highly-populated "super-ensemble". Then, five members are selected from the super-ensemble and used to provide initial and boundary conditions for the integrations with a limited-area model, whose runs generate a Limited-area Ensemble Prediction System (LEPS). The relative impact of targeting the initial perturbations against increasing the horizontal resolution is assessed for the global ensembles as well as for the properties transferred to LEPS integrations, the attention being focussed on the probabilistic prediction of rainfall over a localised area. At the 108, 84 and 60- hour forecast ranges, the overall performance of the global ensembles is not particularly accurate and the best results are obtained by the high-resolution version of EPS. The LEPS performance is very satisfactory in all configurations and the rainfall maps show probability peaks in the correct regions. LEPS products would have been of great assistance to issue flood risk alerts on the basis of limited-area ensemble forecasts. For the 60-hour forecast range, the sensitivity of the results to the LEPS ensemble size is discussed by comparing a 5-member against a 51-member LEPS, where the limited-area model is nested on all EPS members. Little sensitivity is found as concerns the detection of the regions most likely affected by heavy precipitation, the probability peaks being approximately the same in both configurations.


2006 ◽  
Vol 13 (1) ◽  
pp. 53-66 ◽  
Author(s):  
S. Federico ◽  
E. Avolio ◽  
C. Bellecci ◽  
M. Colacino ◽  
R. L. Walko

Abstract. This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.


2016 ◽  
Vol 31 (2) ◽  
pp. 515-530 ◽  
Author(s):  
Florian Weidle ◽  
Yong Wang ◽  
Geert Smet

Abstract It is quite common that in a regional ensemble system the large-scale initial condition (IC) perturbations and the lateral boundary condition (LBC) perturbations are taken from a global ensemble prediction system (EPS). The choice of global EPS as a driving model can have a significant impact on the performance of the regional EPS. This study investigates the impact of large-scale IC/LBC perturbations obtained from different global EPSs on the forecast quality of a regional EPS. For this purpose several experiments are conducted where the Aire Limitée Adaption dynamique Développement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) regional ensemble is forced by two of the world’s leading global ensembles, the European Centre for Medium-Range Weather Forecasts’ Ensemble Prediction System (ECMWF-EPS) and the Global Ensemble Forecasting System (GEFS) from the National Centers for Environmental Prediction (NCEP), which provide the IC and LBC perturbations. The investigation is carried out for a 51-day period during summer 2010 over central Europe. The results indicate that forcing of the regional ensemble with GEFS performs better for surface parameters, whereas at upper levels forcing with ECMWF-EPS is superior. Using perturbations from GEFS lead to a considerably higher spread in ALADIN-LAEF, which is beneficial near the surface where regional EPSs are usually underdispersive. At upper levels, forcing with GEFS leads to an overdispersion of ALADIN-LAEF as a result of the large spread of some parameters, where forcing ALADIN-LAEF with ECMWF-EPS provides statistically more reliable forecasts. The results indicate that the best global EPS might not always provide the best ICs and LBCs for a regional ensemble.


Sign in / Sign up

Export Citation Format

Share Document