probabilistic prediction
Recently Published Documents


TOTAL DOCUMENTS

423
(FIVE YEARS 134)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wenxiu Xie ◽  
Meng Ji ◽  
Mengdan Zhao ◽  
Kam-Yiu Lam ◽  
Chi-Yin Chow ◽  
...  

Background. From Ebola, Zika, to the latest COVID-19 pandemic, outbreaks of highly infectious diseases continue to reveal severe consequences of social and health inequalities. People from low socioeconomic and educational backgrounds as well as low health literacy tend to be affected by the uncertainty, complexity, volatility, and progressiveness of public health crises and emergencies. A key lesson that governments have taken from the ongoing coronavirus pandemic is the importance of developing and disseminating highly accessible, actionable, inclusive, coherent public health advice, which represent a critical tool to help people with diverse cultural, educational backgrounds and varying abilities to effectively implement health policies at the grassroots level. Objective. We aimed to translate the best practices of accessible, inclusive public health advice (purposefully designed for people with low socioeconomic and educational background, health literacy levels, limited English proficiency, and cognitive/functional impairments) on COVID-19 from health authorities in English-speaking multicultural countries (USA, Australia, and UK) to adaptive tools for the evaluation of the accessibility of public health advice in other languages. Methods. We developed an optimised Bayesian classifier to produce probabilistic prediction of the accessibility of official health advice among vulnerable people including migrants and foreigners living in China. We developed an adaptive statistical formula for the rapid evaluation of the accessibility of health advice among vulnerable people in China. Results. Our study provides needed research tools to fill in a persistent gap in Chinese public health research on accessible, inclusive communication of infectious diseases’ prevention and management. For the probabilistic prediction, using the optimised Bayesian machine learning classifier (GNB), the largest positive likelihood ratio (LR+) 16.685 (95% confidence interval: 4.35, 64.04) was identified when the probability threshold was set at 0.2 (sensitivity: 0.98; specificity: 0.94). Conclusion. Effective communication of health risks through accessible, inclusive, actionable public advice represents a powerful tool to reduce health inequalities amidst health crises and emergencies. Our study translated the best-practice public health advice developed during the pandemic into intuitive machine learning classifiers for health authorities to develop evidence-based guidelines of accessible health advice. In addition, we developed adaptive statistical tools for frontline health professionals to assess accessibility of public health advice for people from non-English speaking backgrounds.


Abstract Artificial intelligence (AI) and machine learning (ML) have become important tools for environmental scientists and engineers, both in research and in applications. Although these methods have become quite popular in recent years, they are not new. The use of AI methods began in the 1950s and environmental scientists were adopting them by the 1980s. Although an “AI Winter” temporarily slowed the growth, a more recent resurgence has brought it back with gusto. This paper tells the story of the evolution of AI in the field through the lens of the AMS Committee on Artificial Intelligence Applications to Environmental Science. The environmental sciences possess a host of problems amenable to advancement by intelligent techniques. We review a few of the early applications along with the ML methods of the time and how their progression has impacted these sciences. While AI methods have changed from expert systems in the eighties to neural networks and other data-driven methods, and more recently deep learning, the environmental problems tackled have remained similar. We discuss the types of applications that have shown some of the biggest advances due to AI usage and how they have evolved over the past decades, including topics in weather forecasting, probabilistic prediction, climate estimation, optimization problems, image processing, and improving forecasting models. We finish with a look at where AI as employed in environmental science appears to be headed and some thoughts on how it might be best blended with physical / dynamical modeling approaches to further advance our science.


Author(s):  
Yanlong Liu ◽  
Junzhou Li ◽  
Wanlin Guan ◽  
Mingyu Xu ◽  
Xinkai Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Wallisch ◽  
S. Zeiner ◽  
P. Scholten ◽  
C. Dibiasi ◽  
O. Kimberger

AbstractIntraoperative hypothermia increases perioperative morbidity and identifying patients at risk preoperatively is challenging. The aim of this study was to develop and internally validate prediction models for intraoperative hypothermia occurring despite active warming and to implement the algorithm in an online risk estimation tool. The final dataset included 36,371 surgery cases between September 2013 and May 2019 at the Vienna General Hospital. The primary outcome was minimum temperature measured during surgery. Preoperative data, initial vital signs measured before induction of anesthesia, and known comorbidities recorded in the preanesthetic clinic (PAC) were available, and the final predictors were selected by forward selection and backward elimination. Three models with different levels of information were developed and their predictive performance for minimum temperature below 36 °C and 35.5 °C was assessed using discrimination and calibration. Moderate hypothermia (below 35.5 °C) was observed in 18.2% of cases. The algorithm to predict inadvertent intraoperative hypothermia performed well with concordance statistics of 0.71 (36 °C) and 0.70 (35.5 °C) for the model including data from the preanesthetic clinic. All models were well-calibrated for 36 °C and 35.5 °C. Finally, a web-based implementation of the algorithm was programmed to facilitate the calculation of the probabilistic prediction of a patient’s core temperature to fall below 35.5 °C during surgery. The results indicate that inadvertent intraoperative hypothermia still occurs frequently despite active warming. Additional thermoregulatory measures may be needed to increase the rate of perioperative normothermia. The developed prediction models can support clinical decision-makers in identifying the patients at risk for intraoperative hypothermia and help optimize allocation of additional thermoregulatory interventions.


Forecasting ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 763-773
Author(s):  
Tae-Ho Kang ◽  
Ashish Sharma ◽  
Lucy Marshall

The verification of probabilistic forecasts in hydro-climatology is integral to their development, use, and adoption. We propose here a means of utilizing goodness of fit measures for verifying the reliability of probabilistic forecasts. The difficulty in measuring the goodness of fit for a probabilistic prediction or forecast is that predicted probability distributions for a target variable are not stationary in time, meaning one observation alone exists to quantify goodness of fit for each prediction issued. Therefore, we suggest an additional dissociation that can dissociate target information from the other time variant part—the target to be verified in this study is the alignment of observations to the predicted probability distribution. For this dissociation, the probability integral transformation is used. To measure the goodness of fit for the predicted probability distributions, this study uses the root mean squared deviation metric. If the observations after the dissociation can be assumed to be independent, the mean square deviation metric becomes a chi-square test statistic, which enables statistically testing the hypothesis regarding whether the observations are from the same population as the predicted probability distributions. An illustration of our proposed rationale is provided using the multi-model ensemble prediction for El Niño–Southern Oscillation.


Sign in / Sign up

Export Citation Format

Share Document