ensemble forecasting
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 85)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Yongjiu Liu ◽  
Li Li ◽  
Shenglin Zhou

There are many prediction models that have been adopted to predict uncertain and non-linear photovoltaic power time series. Nonetheless, most models neglected the validity of data preprocessing and ensemble learning strategies, which leads to low forecasting precision and low stability of photovoltaic power. To effectively enhance photovoltaic power forecasting accuracy and stability, an ensemble forecasting frame based on the data pretreatment technology, multi-objective optimization algorithm, statistical method, and deep learning methods is developed. The proposed forecasting frame successfully integrates the advantages of multiple algorithms and validly depict the linear and nonlinear characteristic of photovoltaic power time series, which is conductive to achieving accurate and stable photovoltaic power forecasting results. Three datasets of 15-min photovoltaic power output data obtained from different time periods in Belgium were employed to verify the validity of the proposed system. The simulation results prove that the proposed forecasting frame positively surpasses all comparative hybrid models, ensemble models, and classical models in terms of prediction accuracy and stabilization. For one-, two-, and three-step predictions, the MAPE values obtained from the proposed frame were less than 2, 3, and 5%, respectively. Discussion results also verify that the proposed forecasting frame is obviously different from other comparative models, and is more stable and high-efficiency. Thus, the proposed frame is highly serviceable in elevating photovoltaic power forecasting performance and can be used as an efficient instrument for intelligent grid programming.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 188
Author(s):  
Rodrigo Valdés-Pineda ◽  
Juan B. Valdés ◽  
Sungwook Wi ◽  
Aleix Serrat-Capdevila ◽  
Tirthankar Roy

The combination of Hydrological Models and high-resolution Satellite Precipitation Products (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines for the quantification, propagation, and reduction in hydrological uncertainty when generating streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting (VEF) approach. In this regard, we describe and discuss the main steps required to implement, calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and forecast them up to eight days in the future. The forecasting process called short- to medium-range (SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT, the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS, HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal parameter sets estimated during the calibration process to increase the number of ensembles available for operational forecasting. Finally, inference-based approaches were evaluated during the application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and optimal parameter sets, was significantly achieved through a fully operational implementation of VEF combined with several HPS. Finally, the main challenges and opportunities associated with operational SR2MR streamflow forecasting using VEF are evaluated and discussed.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8489
Author(s):  
Usman Bashir Tayab ◽  
Junwei Lu ◽  
Seyedfoad Taghizadeh ◽  
Ahmed Sayed M. Metwally ◽  
Muhammad Kashif

Microgrid (MG) is a small-scale grid that consists of multiple distributed energy resources and load demand. The microgrid energy management system (M-EMS) is the decision-making centre of the MG. An M-EMS is composed of four modules which are known as forecasting, scheduling, data acquisition, and human-machine interface. However, the forecasting and scheduling modules are considered the major modules from among the four of them. Therefore, this paper proposed an advanced microgrid energy management system (M-EMS) for grid-connected residential microgrid (MG) based on an ensemble forecasting strategy and grey wolf optimization (GWO) based scheduling strategy. In the forecasting module of M-EMS, the ensemble forecasting strategy is proposed to perform the short-term forecasting of PV power and load demand. The GWO based scheduling strategy has been proposed in scheduling module of M-EMS to minimize the operating cost of grid-connected residential MG. A small-scale experiment is conducted using Raspberry Pi 3 B+ via the python programming language to validate the effectiveness of the proposed M-EMS and real-time historical data of PV power, load demand, and weather is adopted as inputs. The performance of the proposed forecasting strategy is compared with ensemble forecasting strategy-1, particle swarm optimization based artificial neural network, and back-propagation neural network. The experimental results highlight that the proposed forecasting strategy outperforms the other strategies and achieved the lowest average value of normalized root mean square error of day-ahead prediction of PV power and load demand for the chosen day. Similarly, the performance of GWO based scheduling strategy of M-EMS is analyzed and compared for three different scenarios. Finally, the experimental results prove the outstanding performance of the proposed scheduling strategy.


2021 ◽  
Vol 4 ◽  
pp. 30-49
Author(s):  
A.Yu. Bundel ◽  
◽  
A.V. Muraviev ◽  
E.D. Olkhovaya ◽  
◽  
...  

State-of-the-art high-resolution NWP models simulate mesoscale systems with a high degree of detail, with large amplitudes and high gradients of fields of weather variables. Higher resolution leads to the spatial and temporal error growth and to a well-known double penalty problem. To solve this problem, the spatial verification methods have been developed over the last two decades, which ignore moderate errors (especially in the position), but can still evaluate the useful skill of a high-resolution model. The paper refers to the updated classification of spatial verification methods, briefly describes the main methods, and gives an overview of the international projects for intercomparison of the methods. Special attention is given to the application of the spatial approach to ensemble forecasting. Popular software packages are considered. The Russian translation is proposed for the relevant English terms. Keywords: high-resolution models, verification, double penalty, spatial methods, ensemble forecasting, object-based methods


Author(s):  
I.А. Rozinkina ◽  
◽  
G.S . Rivin ◽  
R.N. Burak ◽  
Е.D. Аstakhova ◽  
...  

The paper considers the results of activities on the development of output products for the non-hydrostatic short-range numerical weather prediction systems: COSMO-RuBy with a grid spacing of 2.2 km at the Hydrometcentre of Russia and WRF-ARW with a grid spacing of 3 km in Belhydromet. The important results of the activities are the organization of the exchange of unified products between the countries and the development at the Hydrometcentre of Russia of two technologies for obtaining the unified products: the multi-model lagged ensemble system and the system for the complex correction based on machine learning of model results. A specialized web-site providing convenient work of forecasters with the COSMO-RuBy results and unified products was created at the Hydrometcentre of Russia based on the feedback from forecasters. The systems of common visualization and verification of COSMO-RuBy and WRF-ARW results are implemented in Belhydromet. Keywords: numerical weather prediction, ensemble forecasting, visualization, machine learning


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1578
Author(s):  
Xin-Min Zeng ◽  
Yong-Jing Liang ◽  
Yang Wang ◽  
Yi-Qun Zheng

Although land surface influences atmospheric processes significantly, insufficient studies have been conducted on the ensemble forecasts using the breeding of growing modes (BGM) with perturbed land surface variables. To investigate the practicability of perturbed land variables for ensemble forecasting, we used the ARWv3 mesoscale model to generate ensembles for an event of 24 h heavy rainfall with perturbed atmospheric and land variables by the BGM method. Results show that both atmospheric and land variables can generate initial perturbations with BGM, except that they differ in time and saturation characteristics, e.g., saturation is generally achieved in approximately 30 h with a growth rate of ~1.30 for atmospheric variables versus 102 h and growth rate of 1.02 for land variables. With the increase in precipitation, the importance of the perturbations of land variables also increases as compared to those of atmospheric variables. Moreover, the influence of the perturbations of land variables on simulated precipitation is still relatively large, although smaller than that of atmospheric variables, e.g., the spreads of perturbed atmospheric and land subsets were 7.3 and 3.8 mm, respectively. The benefits of perturbed initialisation can also be observed in terms of probability forecast. All findings indicate that the BGM method with perturbed land variables has the potential to ensemble forecasts for precipitation.


2021 ◽  
Vol 13 (22) ◽  
pp. 4670
Author(s):  
Fangjia Dou ◽  
Xiaolei Lv ◽  
Huiming Chai

The interferometric synthetic aperture radar (InSAR) technique is widely utilized to measure ground-surface displacement. One of the main limitations of the measurements is the atmospheric phase delay effects. For satellites with shorter wavelengths, the atmospheric delay mainly consists of the tropospheric delay influenced by temperature, pressure, and water vapor. Tropospheric delay can be calculated using numerical weather prediction (NWP) model at the same moment as synthetic aperture radar (SAR) acquisition. Scientific researchers mainly use ensemble forecasting to produce better forecasts and analyze the uncertainties caused by physic parameterizations. In this study, we simulated the relevant meteorological parameters using the ensemble scheme of the stochastic physic perturbation tendency (SPPT) based on the weather research forecasting (WRF) model, which is one of the most broadly used NWP models. We selected an area in Foshan, Guangdong Province, in the southeast of China, and calculated the corresponding atmospheric delay. InSAR images were computed through data from the Sentinel-1A satellite and mitigated by the ensemble mean of the WRF-SPPT results. The WRF-SPPT method improves the mitigating effect more than WRF simulation without ensemble forecasting. The atmospherically corrected InSAR phases were used in the stacking process to estimate the linear deformation rate in the experimental area. The root mean square errors (RMSE) of the deformation rate without correction, with WRF-only correction, and with WRF-SPPT correction were calculated, indicating that ensemble forecasting can significantly reduce the atmospheric delay in stacking. In addition, the ensemble forecasting based on a combination of initial uncertainties and stochastic physic perturbation tendencies showed better correction performance compared with the ensemble forecasting generated by a set of perturbed initial conditions without considering the model’s uncertainties.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7664
Author(s):  
Karol Bot ◽  
Samira Santos ◽  
Inoussa Laouali ◽  
Antonio Ruano ◽  
Maria da Graça Ruano

The increasing levels of energy consumption worldwide is raising issues with respect to surpassing supply limits, causing severe effects on the environment, and the exhaustion of energy resources. Buildings are one of the most relevant sectors in terms of energy consumption; as such, efficient Home or Building Management Systems are an important topic of research. This study discusses the use of ensemble techniques in order to improve the performance of artificial neural networks models used for energy forecasting in residential houses. The case study is a residential house, located in Portugal, that is equipped with PV generation and battery storage and controlled by a Home Energy Management System (HEMS). It has been shown that the ensemble forecasting results are superior to single selected models, which were already excellent. A simple procedure was proposed for selecting the models to be used in the ensemble, together with a heuristic to determine the number of models.


Author(s):  
Qian Zhou ◽  
Lei Chen ◽  
Wansuo Duan ◽  
Xu Wang ◽  
Ziqing Zu ◽  
...  

AbstractUsing the latest operational version of the ENSO forecast system from the National Marine Environmental Forecasting Center (NMEFC) of China, ensemble forecasting experiments are performed for El Niño-Southern Oscillation (ENSO) events that occurred from 1997 to 2017 by generating initial perturbations of the conditional nonlinear optimal perturbation (CNOP) and Climatically relevant Singular Vector (CSV) structures. It is shown that when the initial perturbation of the leading CSV structure in the ensemble forecast of the CSVs-scheme is replaced by those of the CNOP structure, the resulted ensemble ENSO forecasts of the CNOP+CSVs-scheme tend to possess a larger spread than the forecasts obtained with the CSVs-scheme alone, leading to a better match between the root mean square error and the ensemble spread, a more reasonable Talagrand diagram and an improved Brier skill score (BSS). All these results indicate that the ensemble forecasts generated by the CNOP+CSVs-scheme can improve both the accuracy of ENSO forecasting and the reliability of the ensemble forecasting system. Therefore, ENSO ensemble forecasting should consider the effect of nonlinearity on the ensemble initial perturbations to achieve a much higher skill. It is expected that fully nonlinear ensemble initial perturbations can be sufficiently yielded to produce ensemble forecasts for ENSO, finally improving the ENSO forecast skill to the greatest possible extent. The CNOP will be a useful method to yield fully nonlinear optimal initial perturbations for ensemble forecasting.


Polar Biology ◽  
2021 ◽  
Author(s):  
Greta C. Vega ◽  
Luis R. Pertierra ◽  
Javier Benayas ◽  
Miguel Ángel Olalla-Tárraga

Sign in / Sign up

Export Citation Format

Share Document