scholarly journals The Effect of the Galápagos Islands on ENSO in Forced Ocean and Hybrid Coupled Models

2008 ◽  
Vol 38 (11) ◽  
pp. 2519-2534 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Raghu Murtugudde ◽  
Antonio J. Busalacchi

Abstract An ocean general circulation model (OGCM) of the tropical Pacific Ocean is used to examine the effects of the Galápagos Islands on the El Niño–Southern Oscillation (ENSO). First, a series of experiments is conducted using the OGCM in a forced context, whereby an idealized El Niño event may be examined in cases with and without the Galápagos Islands. In this setup, the sensitivity of the sea surface temperature (SST) anomaly response to the presence of the Galápagos Islands is examined. Second, with the OGCM coupled to the atmosphere via zonal wind stress, experiments are conducted with and without the Galápagos Islands to determine how the Galápagos Islands influence the time scale of ENSO. In the forced setup, the Galápagos Islands lead to a damped SST anomaly given an identical zonal wind stress perturbation. Mixed layer heat budget calculations implicate the entrainment mixing term, which confirms that the difference is due to the Galápagos Islands changing the background mean state, that is, the equatorial thermocline as diagnosed in a previous paper. In the hybrid coupled experiments, there is a clear shift in the power spectrum of SST anomalies in the eastern equatorial Pacific. Specifically, the Galápagos Islands lead to a shift in the ENSO time scale from a biennial to a quasi-quadrennial period. Mechanisms for the shift in ENSO time scale due to the Galápagos Islands are discussed in the context of well-known paradigms for the oscillatory nature of ENSO.

2006 ◽  
Vol 19 (2) ◽  
pp. 226-241 ◽  
Author(s):  
Xuebin Zhang ◽  
Michael J. McPhaden

Abstract Vertical advection of temperature is the primary mechanism by which El Niño–Southern Oscillation (ENSO) time-scale sea surface temperature (SST) anomalies are generated in the eastern equatorial Pacific. Variations in vertical advection are mediated primarily by remote wind-forced thermocline displacements, which control the temperature of water upwelled to the surface. However, during some ENSO events, large wind stress variations occur in the eastern Pacific that in principle should affect local upwelling rates, the depth of the thermocline, and SST. In this study, the impact of these wind stress variations on the eastern equatorial Pacific is addressed using multiple linear regression analysis and a linear equatorial wave model. The regression analysis indicates that a zonal wind stress anomaly of 0.01 N m−2 leads to approximately a 1°C SST anomaly over the Niño-3 region (5°N–5°S, 90°–150°W) due to changes in local upwelling rates. Wind stress variations of this magnitude occurred in the eastern Pacific during the 1982/83 and 1997/98 El Niños, accounting for about 1/3 of the maximum SST anomaly during these events. The linear equatorial wave model also indicates that depending on the period in question, zonal wind stress variations in the eastern Pacific can work either with or against remote wind stress forcing from the central and western Pacific to determine the thermocline depth in the eastern Pacific. Thus, zonal wind stress variations in the eastern Pacific contribute to the generation of interannual SST anomalies through both changes in local upwelling rates and changes in thermocline depth. Positive feedbacks between the ocean and atmosphere in the eastern Pacific are shown to influence the evolution of the surface wind field, especially during strong El Niño events, emphasizing the coupled nature of variability in the region. Implications of these results for understanding the character of event-to-event differences in El Niño and La Niña are discussed.


2006 ◽  
Vol 19 (12) ◽  
pp. 2647-2664 ◽  
Author(s):  
Gabriel A. Vecchi

Abstract The mechanisms that drove zonal wind stress (τx) changes in the near-equatorial Pacific at the end of the extreme 1997–98 El Niño event are explored using a global atmospheric general circulation model. The analysis focuses on three features of the τx evolution between October 1997 and May 1998 that were fundamental in driving the oceanic changes at the end of this El Niño event: (i) the southward shift of near-date-line surface zonal wind stress (τx) anomalies beginning November 1997, (ii) the disappearance of the easterly τx from the eastern equatorial Pacific (EEqP) in February 1998, and (iii) the reappearance of easterly τx in the EEqP in May 1998. It is shown that these wind changes represent the deterministic response of the atmosphere to the observed sea surface temperature (SST) field, resulting from changes in the meridional structure of atmospheric convective anomalies in response to the seasonally phase-locked meridional movement of the warmest SST. The southward shift of the near-date-line τx anomalies at the end of this El Niño event was controlled by the seasonal movement of the warmest SST south of the equator, which—both directly and through its influence on the atmospheric response to changes in SST anomaly—brought the convective anomalies from being centered about the equator to being centered south of the equator. The disappearance (reappearance) of easterly EEqP τx has only been evident in extreme El Niño events and has been associated with the development (northward retreat) of an equatorial intertropical convergence zone (ITCZ). The disappearance/return of EEqP easterly τx arises in the AGCM as the deterministic response to changes in the SST field, tied principally to the changes in climatological SST (given time-invariant extreme El Niño SSTA) and not to changes in the underlying SSTA field. The disappearance (return) of EEqP easterly τx in late boreal winter (late boreal spring) is a characteristic atmospheric response to idealized extreme El Niño SST anomalies; this suggests that the distinctive termination of the 1997–98 El Niño event is that to be expected for extreme El Niño events.


2018 ◽  
Vol 259 ◽  
pp. 20-33 ◽  
Author(s):  
John C. Wingfield ◽  
Michaela Hau ◽  
P. Dee Boersma ◽  
L. Michael Romero ◽  
Nigella Hillgarth ◽  
...  

2020 ◽  
Vol 33 (6) ◽  
pp. 2075-2091 ◽  
Author(s):  
Bowen Zhao ◽  
Alexey Fedorov

AbstractChanges in background zonal wind in the tropical Pacific are often invoked to explain changes in ENSO properties. However, the sensitivity of ENSO to mean zonal winds has been thoroughly explored only in intermediate coupled models (following Zebiak and Cane), not in coupled GCMs. The role of mean meridional winds has received even less attention. Accordingly, the goal of this study is to examine systematically the effects of both zonal (equatorial) and meridional (cross-equatorial) background winds on ENSO using targeted experiments with a comprehensive climate model (CESM). Changes in the mean winds are generated by imposing heat flux forcing in two confined regions at a sufficient distance north and south of the equator. We find that the strengthening of either wind component reduces ENSO amplitude, especially eastern Pacific SST variability, and inhibits meridional swings of the intertropical convergence zone (ITCZ). The effect of zonal winds is generally stronger than that of meridional winds. A stability analysis reveals that the strengthening of zonal and meridional winds weakens the ENSO key positive feedbacks, specifically the zonal advection and thermocline feedbacks, which explains these changes. Zonal wind enhancement also intensifies mean upwelling and hence dynamical damping, leading to a further weakening of El Niño events. Ultimately, this study argues that the zonal and, to a lesser extent, meridional wind strengthening of the past decades may have contributed to the observed shift of El Niño characteristics after the year 2000.


2007 ◽  
Vol 20 (10) ◽  
pp. 2273-2298 ◽  
Author(s):  
Hilary Spencer ◽  
Rowan Sutton ◽  
Julia M. Slingo

Abstract Here the factors affecting the mean state and El Niño variability in the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) are examined with and without heat flux or wind stress corrections. There is currently little confidence in the prediction of El Niño for seasonal forecasts or climate change due to the inaccuracies in coupled models. If heat flux or wind stress corrections could reduce these biases then forecasts might be improved. Heat flux corrections have unexpected effects on both the mean state and variability of HadCM3. HadCM3 is found to be very sensitive to the corrections imposed. If heat flux corrections are imposed Tropics wide then easterlies in the eastern equatorial Pacific are increased leading to localized steep east–west gradients in the thermocline or “thermocline jumps,” which appear to suppress propagation of heat from the west to the east and hence suppress strong El Niños so that ENSO variability is weak. In contrast, if heat flux corrections are imposed only within 10° of the equator, an atmospheric teleconnection from the cold subtropical SST biases intensifies the ITCZ and weakens the equatorial easterlies. As a result, the thermocline jumps are flattened and strong El Niños occur very frequently. Neither heat flux correction procedure improves the representation of El Niño. Wind stress corrections alone have a small impact on the coupled model. Some of the SST warm biases are reduced, but the variability is not altered significantly.


1986 ◽  
Vol 17 (1-2) ◽  
pp. 137-162 ◽  
Author(s):  
S.P. Hayes ◽  
L.J. Mangum ◽  
R.T. Barber ◽  
A. Huyer ◽  
R.L. Smith

Sign in / Sign up

Export Citation Format

Share Document