atmospheric response
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 48)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenjing Shi ◽  
Qingzhe Wang ◽  
Ziniu Xiao ◽  
Wei Cheng ◽  
Wei Duan

As two important components of the Asian summer monsoon system, the intensities of South Asian High (SAH) and Somali jet (SMJ) in summer exhibit both interannual and decadal variabilities. On the interdecadal timescale, the temporal evolution of the SAH intensity is in phase with that of the SMJ intensity. By comparison, we find that both of them evolve synchronously with the Atlantic Multidecadal Oscillation (AMO), with AMO cold/warm phases corresponding to the weakening/strengthening of SAH and SMJ. Further diagnoses indicate that the interdecadal variabilities of the SAH and SMJ intensities in summer may be modulated by the AMO phase. Mechanistically, this modulation appears to be achieved via an interdecadal Silk Road pattern (SRP)-like wave train along the Asian westerly jet and Matsuno–Gill tropical atmospheric response. The cold SST anomaly over extratropical North Atlantic related to the AMO firstly induces an anomalous high over Western Europe and produces a well-organized wave train between 30°N and 60°N. The anomalous Iranian Plateau low along with the wave train path leads to a weakened SAH. Besides, the AMO-related cold SST anomalies over tropical North Atlantic cool the tropical tropospheric atmosphere through the moist adjustment process and produce a Matsuno–Gill-like atmospheric response covering the tropical Indian Ocean. Due to the Matsuno–Gill response, subsidence motion anomalies over the central tropical Indian Ocean corresponding to a result in increased lower-level divergence and upper-level convergence are excited over the tropical Indian Ocean. Finally, the tropical Indian Ocean divergence in the lower troposphere leads to the weakened summer SMJ, and the tropical Indian Ocean convergence in the upper troposphere results in the decrease and northward displacement of SAH in summer.


2021 ◽  
Author(s):  
Abdullah A. Fahad ◽  
Natalie J. Burls

AbstractSouthern hemisphere subtropical anticyclones are projected to change in a warmer climate during both austral summer and winter. A recent study of CMIP 5 & 6 projections found a combination of local diabatic heating changes and static-stability-induced changes in baroclinic eddy growth as the dominant drivers. Yet the underlying mechanisms forcing these changes still remain uninvestigated. This study aims to enhance our mechanistic understanding of what drives these Southern Hemisphere anticyclones changes during both seasons. Using an AGCM, we decompose the response to CO2-induced warming into two components: (1) the fast atmospheric response to direct CO2 radiative forcing, and (2) the slow atmospheric response due to indirect sea surface temperature warming. Additionally, we isolate the influence of tropical diabatic heating with AGCM added heating experiments. As a complement to our numerical AGCM experiments, we analyze the Atmospheric and Cloud Feedback Model Intercomparison Project experiments. Results from sensitivity experiments show that slow subtropical sea surface temperature warming primarily forces the projected changes in subtropical anticyclones through baroclinicity change. Fast CO2 atmospheric radiative forcing on the other hand plays a secondary role, with the most notable exception being the South Atlantic subtropical anticyclone in austral winter, where it opposes the forcing by sea surface temperature changes resulting in a muted net response. Lastly, we find that tropical diabatic heating changes only significantly influence Southern Hemisphere subtropical anticyclone changes through tropospheric wind shear changes during austral winter.


2021 ◽  
Author(s):  
Haibo Hu ◽  
Rongrong Wang ◽  
Fei Liu ◽  
William Perrie ◽  
Jiabei Fang ◽  
...  

2021 ◽  
Author(s):  
James Sinclair ◽  
Glenn Orton ◽  
Meera Krishnamoorty ◽  
Leigh Fletcher ◽  
Joseph Hora ◽  
...  

<p>We present Earth-based observations of Jupiter from 1994 and 2009, which respectively capture the effects on Jupiter’s atmosphere by the impacts of Comet D/Shoemaker-Levy 9 (SL9) and the impact by an unknown object whose visible impression on Jupiter’s appearance was discovered by Anthony Wesley.  Previous studies have suggested the 2009 impactor was by an asteroid on the basis of differences in Jupiter’s atmospheric response compared to the 1994 impact by SL9.  These differences include detections of 9.1-μm silicate features in the 2009 impact site (Orton et al., 2010, Icarus 211, 587-602) and the fact the 2009 debris field shrank faster (Hammel et al., 2010, ApJL 715, L150-L154), both of which suggest the 2009 impactor was more rocky/refractory in composition.  However, Schenk <em>et al.</em> 2004 (Jupiter: The Planet, Satellites and Magnetosphere, Bagenal, Dowling, McKinnon, 427-456) state that comets are orders of magnitude more likely to impact Jupiter than asteroids since Jupiter should have cleared its orbit a long time ago. Thus, either (1) the 2009 impact was caused by an asteroid and therefore a statistical fluke, (2) Jupiter-Family Comets (JFCs) are a highly heterogeneous population, with some containing rocky/refractory interiors hidden from remote-sensing, or (3) there is a population of asteroids among bodies classified as JFCs. In order to explore these hypotheses, we performed a comparative spectral re-analysis of broadband imaging and low-resolution spectra measured during/after the 1994 and 2009 impacts. The comparison used consistent procedures for reduction and calibration of the data, atmospheric models, radiative-transfer software and spectroscopic line data in order to facilitate direct comparisons between 1994 and 2009 events.  </p>


Author(s):  
M.G. Manoj ◽  
C. Sivan ◽  
V. Rakesh ◽  
Rejoy Rebello ◽  
S. Abhilash ◽  
...  

2021 ◽  
Author(s):  
Luca Famooss Paolini ◽  
Alessio Bellucci ◽  
Paolo Ruggieri ◽  
Panos Athanasiadis ◽  
Silvio Gualdi

<p>Western boundary currents transport a large amount of heat from the Tropics toward higher latitudes; furthermore they are characterized by a strong sea surface temperature (SST) gradient. For such reasons they have been shown to be fundamental in influencing the climate of the Northern Hemisphere and its variability, and a  potentially relevant source of atmospheric predictability. General circulation models show deficiencies in simulating the observed atmospheric response to SST front variability. The atmospheric horizontal resolution has been recently proposed as a key element in understanding such differences. However, a multi-model analysis to systematically investigate differences between low-resolution and high-resolution atmospheric response to oceanic forcing is still lacking. The present work has the objective to fill this gap, analysing the atmospheric response to Gulf Stream SST front (GSF) shifting using data from recent High Resolution Model Intercomparison Project (HighResMIP). Ensembles of historical simulations performed with three atmospheric general circulation models (AGCMs) have been analysed, each conducted with a low-resolution (LR, about 1°) and a high-resolution (HR, about 0.25°) configuration. AGCMs have been forced with observed SSTs (HadISST2 dataset), available at daily frequency on a 0.25° grid, during 1950–2014. Results show atmospheric responses to the SST-induced diabatic heating anomalies that are strongly resolution dependent. In LR simulations a low-pressure anomaly is present downstream of the SST anomaly, while the diabatic heating anomaly is mainly balanced by meridional advection of air coming from higher latitudes, as expected for an extra-tropical shallow heat source. In contrast, HR simulations generate a high-pressure anomaly downstream of the SST anomaly, thus driving positive temperature advection from lower latitudes (not balancing diabatic heating). Along the vertical direction, both in LR and HR simulation, the diabatic heating in the interior of the atmosphere is balanced by upward motion south of GS SST front and downward motion north and further south of the Gulf Stream. Finally, LR simulations show a reduction in storm-track activity over the North Atlantic, whereas HR simulations show a meridional displacement of the storm-track considerably larger (yet in the same direction) than that of the SST front. HR simulations reproduce the atmospheric response obtained from observations, albeit weaker. This is a hint for the existence of a positive feedback between ocean and atmosphere, as proposed in previous studies. These findings are qualitatively consistent with previous results in literature and, leveraging on recent coordinated modelling efforts, shed light on the effective role of atmospheric horizontal resolution in modelling the atmospheric response to extra-tropical oceanic forcing.</p>


2021 ◽  
Vol 34 (9) ◽  
pp. 3343-3354
Author(s):  
Laura Paccini ◽  
Cathy Hohenegger ◽  
Bjorn Stevens

AbstractThis study investigates whether the representation of explicit and parameterized convection influences the response to the Atlantic meridional mode (AMM). The main focus is on the precipitation response to the AMM-SST pattern, but possible implications for the atmospheric feedback on SST are also examined by considering differences in the circulation response between explicit and parameterized convection. On the basis of analysis from observations, SST composites are built to represent the positive and negative AMM. These SST patterns, in addition to the March–May climatology, are prescribed to the atmospheric ICON model. High-resolution simulations with explicit convection (E-CON) and coarse-resolution simulations with parameterized convection (P-CON) are used over a nested tropical Atlantic Ocean domain and a global domain, respectively. Our results show that a meridional shift of about 1° in the precipitation climatology explains most of the response to the AMM-SST pattern in simulations both with explicit convection and with parameterized convection. Our results also indicate a linearity in the precipitation response to the positive and negative AMM in E-CON, in contrast to P-CON. Further analysis of the atmospheric response to the AMM reveals that anomalies in the wind-driven enthalpy fluxes are generally stronger in E-CON than in P-CON. This result suggests that SST anomalies would be amplified more strongly in coupled simulations using an explicit representation of convection.


2021 ◽  
Vol 38 (5) ◽  
pp. 785-799
Author(s):  
Jianqi Zhang ◽  
Chongyin Li ◽  
Xin Li ◽  
Chao Zhang ◽  
Jingjing Chen

Sign in / Sign up

Export Citation Format

Share Document