scholarly journals Wind Stress Variations and Interannual Sea Surface Temperature Anomalies in the Eastern Equatorial Pacific

2006 ◽  
Vol 19 (2) ◽  
pp. 226-241 ◽  
Author(s):  
Xuebin Zhang ◽  
Michael J. McPhaden

Abstract Vertical advection of temperature is the primary mechanism by which El Niño–Southern Oscillation (ENSO) time-scale sea surface temperature (SST) anomalies are generated in the eastern equatorial Pacific. Variations in vertical advection are mediated primarily by remote wind-forced thermocline displacements, which control the temperature of water upwelled to the surface. However, during some ENSO events, large wind stress variations occur in the eastern Pacific that in principle should affect local upwelling rates, the depth of the thermocline, and SST. In this study, the impact of these wind stress variations on the eastern equatorial Pacific is addressed using multiple linear regression analysis and a linear equatorial wave model. The regression analysis indicates that a zonal wind stress anomaly of 0.01 N m−2 leads to approximately a 1°C SST anomaly over the Niño-3 region (5°N–5°S, 90°–150°W) due to changes in local upwelling rates. Wind stress variations of this magnitude occurred in the eastern Pacific during the 1982/83 and 1997/98 El Niños, accounting for about 1/3 of the maximum SST anomaly during these events. The linear equatorial wave model also indicates that depending on the period in question, zonal wind stress variations in the eastern Pacific can work either with or against remote wind stress forcing from the central and western Pacific to determine the thermocline depth in the eastern Pacific. Thus, zonal wind stress variations in the eastern Pacific contribute to the generation of interannual SST anomalies through both changes in local upwelling rates and changes in thermocline depth. Positive feedbacks between the ocean and atmosphere in the eastern Pacific are shown to influence the evolution of the surface wind field, especially during strong El Niño events, emphasizing the coupled nature of variability in the region. Implications of these results for understanding the character of event-to-event differences in El Niño and La Niña are discussed.

2006 ◽  
Vol 19 (12) ◽  
pp. 2647-2664 ◽  
Author(s):  
Gabriel A. Vecchi

Abstract The mechanisms that drove zonal wind stress (τx) changes in the near-equatorial Pacific at the end of the extreme 1997–98 El Niño event are explored using a global atmospheric general circulation model. The analysis focuses on three features of the τx evolution between October 1997 and May 1998 that were fundamental in driving the oceanic changes at the end of this El Niño event: (i) the southward shift of near-date-line surface zonal wind stress (τx) anomalies beginning November 1997, (ii) the disappearance of the easterly τx from the eastern equatorial Pacific (EEqP) in February 1998, and (iii) the reappearance of easterly τx in the EEqP in May 1998. It is shown that these wind changes represent the deterministic response of the atmosphere to the observed sea surface temperature (SST) field, resulting from changes in the meridional structure of atmospheric convective anomalies in response to the seasonally phase-locked meridional movement of the warmest SST. The southward shift of the near-date-line τx anomalies at the end of this El Niño event was controlled by the seasonal movement of the warmest SST south of the equator, which—both directly and through its influence on the atmospheric response to changes in SST anomaly—brought the convective anomalies from being centered about the equator to being centered south of the equator. The disappearance (reappearance) of easterly EEqP τx has only been evident in extreme El Niño events and has been associated with the development (northward retreat) of an equatorial intertropical convergence zone (ITCZ). The disappearance/return of EEqP easterly τx arises in the AGCM as the deterministic response to changes in the SST field, tied principally to the changes in climatological SST (given time-invariant extreme El Niño SSTA) and not to changes in the underlying SSTA field. The disappearance (return) of EEqP easterly τx in late boreal winter (late boreal spring) is a characteristic atmospheric response to idealized extreme El Niño SST anomalies; this suggests that the distinctive termination of the 1997–98 El Niño event is that to be expected for extreme El Niño events.


2011 ◽  
Vol 24 (16) ◽  
pp. 4480-4493 ◽  
Author(s):  
Xuebin Zhang ◽  
Bruce Cornuelle ◽  
Dean Roemmich

Abstract The evolution of sea surface temperature (SST) over the eastern equatorial Pacific plays a significant role in the intense tropical air–sea interaction there and is of central importance to the El Niño–Southern Oscillation (ENSO) phenomenon. Effects of atmospheric fields (especially wind stress) and ocean state on the eastern equatorial Pacific SST variations are investigated using the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint model, which can calculate the sensitivities of a cost function (in this case the averaged 0–30-m temperature in the Niño-3 region during an ENSO event peak) to previous atmospheric forcing fields and ocean state going backward in time. The sensitivity of the Niño-3 surface temperature to monthly zonal wind stress in preceding months can be understood by invoking mixed layer heat balance, ocean dynamics, and especially linear equatorial wave dynamics. The maximum positive sensitivity of the Niño-3 surface temperature to local wind forcing usually happens ~1–2 months before the peak of the ENSO event and is hypothesized to be associated with the Ekman pumping mechanism. In model experiments, its magnitude is closely related to the subsurface vertical temperature gradient, exhibiting strong event-to-event differences with strong (weak) positive sensitivity during La Niña (strong El Niño) events. The adjoint sensitivity to remote wind forcing in the central and western equatorial Pacific is consistent with the standard hypothesis that the remote wind forcing affects the Niño-3 surface temperature indirectly by exciting equatorial Kelvin and Rossby waves and modulating thermocline depth in the Niño-3 region. The current adjoint sensitivity study is consistent with a previous regression-based sensitivity study derived from perturbation experiments. Finally, implication for ENSO monitoring and prediction is also discussed.


2009 ◽  
Vol 22 (7) ◽  
pp. 1801-1818 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman ◽  
Huug van den Dool

Abstract The present study documents the so-called spring prediction and persistence barriers in association with El Niño–Southern Oscillation (ENSO) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) retrospective forecasts. It is found that the spring prediction and persistence barriers in the eastern equatorial Pacific sea surface temperature (SST) are preceded by a boreal winter barrier in the western equatorial Pacific zonal wind stress. The time of the persistence barrier is closely related to the time of the ENSO phase transition, but may differ from the time of the lowest variance. The seasonal change of the signal-to-noise ratio cannot explain the persistence barrier. While the noise may lead to a drop of skill around boreal spring in the western equatorial Pacific zonal wind stress, its impacts on the skill of eastern equatorial Pacific SST is small. The equatorial Pacific zonal winds display an excessive response to ENSO-related SST anomalies, which leads to a longer persistence in the equatorial Pacific thermocline depth anomalies and a delayed transition of the eastern equatorial Pacific SST anomalies. This provides an interpretation for the prediction skill drop in boreal spring in the eastern equatorial Pacific SST. The results suggest that improving the atmospheric model wind response to SST anomalies may reduce the spring prediction barrier.


2008 ◽  
Vol 38 (11) ◽  
pp. 2519-2534 ◽  
Author(s):  
Kristopher B. Karnauskas ◽  
Raghu Murtugudde ◽  
Antonio J. Busalacchi

Abstract An ocean general circulation model (OGCM) of the tropical Pacific Ocean is used to examine the effects of the Galápagos Islands on the El Niño–Southern Oscillation (ENSO). First, a series of experiments is conducted using the OGCM in a forced context, whereby an idealized El Niño event may be examined in cases with and without the Galápagos Islands. In this setup, the sensitivity of the sea surface temperature (SST) anomaly response to the presence of the Galápagos Islands is examined. Second, with the OGCM coupled to the atmosphere via zonal wind stress, experiments are conducted with and without the Galápagos Islands to determine how the Galápagos Islands influence the time scale of ENSO. In the forced setup, the Galápagos Islands lead to a damped SST anomaly given an identical zonal wind stress perturbation. Mixed layer heat budget calculations implicate the entrainment mixing term, which confirms that the difference is due to the Galápagos Islands changing the background mean state, that is, the equatorial thermocline as diagnosed in a previous paper. In the hybrid coupled experiments, there is a clear shift in the power spectrum of SST anomalies in the eastern equatorial Pacific. Specifically, the Galápagos Islands lead to a shift in the ENSO time scale from a biennial to a quasi-quadrennial period. Mechanisms for the shift in ENSO time scale due to the Galápagos Islands are discussed in the context of well-known paradigms for the oscillatory nature of ENSO.


2016 ◽  
Vol 29 (16) ◽  
pp. 5859-5877 ◽  
Author(s):  
Han-Ching Chen ◽  
Zeng-Zhen Hu ◽  
Bohua Huang ◽  
Chung-Hsiung Sui

Abstract This study shows the sudden basinwide reversal of anomalous equatorial zonal transport above the thermocline at the peaking phase of ENSO triggers rapid termination of ENSO events. The anomalous equatorial zonal transport is controlled by the concavity of anomalous thermocline meridional structure across the equator. During the developing phase of ENSO, opposite zonal transport anomalies form in the western-central and central-eastern equatorial Pacific, respectively. Both are driven by the equatorial thermocline anomalies in response to zonal wind anomalies over the western-central equatorial ocean. At this stage, the anomalous zonal transport in the east enhances ENSO growth through zonal SST advection. In the mature phase of ENSO, off-equatorial thermocline depth anomalies become more dominant in the eastern Pacific because of the reflection of equatorial signals at the eastern boundary. As a result, the meridional concavity of the thermocline anomalies is reversed in the east. This change reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, joining with the existing reversed zonal transport anomalies farther to the west, and forms a basinwide transport reversal throughout the equatorial Pacific. This basinwide transport reversal weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal transport reduces the existing zonal tilting of the equatorial thermocline and weakens its feedback to wind anomalies effectively. This basinwide reversal is built in at the peak phase of ENSO as an oceanic control on the evolution of both El Niño and La Niña events. The reversed zonal transport anomaly after the mature phase weakens El Niño in the eastern Pacific more efficiently than it weakens La Niña.


2019 ◽  
Vol 32 (5) ◽  
pp. 1381-1394 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Bohua Huang

Evolutions of oceanic and atmospheric anomalies in the equatorial Pacific during four strong El Niños (1982/83, 1991/92, 1997/98, and 2015/16) since 1979 are compared. The contributions of the atmosphere–ocean coupling to El Niño–associated sea surface temperature anomalies (SSTA) are identified and their association with low-level winds as well as different time-scale variations is examined. Although overall SSTA in the central and eastern equatorial Pacific is strongest and comparable in the 1997/98 and 2015/16 El Niños, the associated subsurface ocean temperature as well as deep convection and surface wind stress anomalies in the central and eastern equatorial Pacific are weaker during 2015/16 than that during 1997/98. That may be associated with a variation of the wind–SST and wind–thermocline interactions. Both the wind–SST and wind–thermocline interactions play a less important role during 2015/16 than during 1997/98. Such differences are associated with the differences of the low-level westerly wind as well as the contribution of different time-scale variations in different events. Similar to the interannual time-scale variation, the intraseasonal–interseasonal time-scale component always has positive contributions to the intensity of all four strong El Niños. Interestingly, the role of the interdecadal-trend time-scale component varies with event. The contribution is negligible during the 1982/83 El Niño, negative during the 1997/98 El Niño, and positive during the 1991/92 and 2015/16 El Niños. Thus, in addition to the atmosphere–ocean coupling at intraseasonal to interannual time scales, interdecadal and longer time-scale variations may play an important and sometimes crucial role in determining the intensity of El Niño.


2017 ◽  
Vol 30 (4) ◽  
pp. 1505-1519 ◽  
Author(s):  
Andrew M. Chiodi ◽  
D. E. Harrison

Abstract The unexpected halt of warm sea surface temperature anomaly (SSTA) growth in 2014 and development of a major El Niño in 2015 has drawn attention to our ability to understand and predict El Niño development. Wind stress–forced ocean model studies have satisfactorily reproduced observed equatorial Pacific SSTAs during periods when data return from the TAO/TRITON buoy network was high. Unfortunately, TAO/TRITON data return in 2014 was poor. To study 2014 SSTA development, the observed wind gaps must be filled. The hypothesis that subseasonal wind events provided the dominant driver of observed waveguide SSTA development in 2014 and 2015 is used along with the available buoy winds to construct an oceanic waveguide-wide surface stress field of westerly wind events (WWEs) and easterly wind surges (EWSs). It is found that the observed Niño-3.4 SSTA development in 2014 and 2015 can thereby be reproduced satisfactorily. Previous 2014 studies used other wind fields and reached differing conclusions about the importance of WWEs and EWSs. Experiment results herein help explain these inconsistencies, and clarify the relative importance of WWEs and EWSs. It is found that the springtime surplus of WWEs and summertime balance between WWEs and EWSs (yielding small net wind stress anomaly) accounts for the early development and midyear reversal of El Niño–like SSTA development in 2014. A strong abundance of WWEs in 2015 accounts for the rapid SSTA warming observed then. Accurately forecasting equatorial Pacific SSTA in years like 2014 and 2015 may require learning to predict WWE and EWS occurrence characteristics.


2021 ◽  
Vol 34 (2) ◽  
pp. 449-464
Author(s):  
Samantha Stevenson ◽  
Andrew T. Wittenberg ◽  
John Fasullo ◽  
Sloan Coats ◽  
Bette Otto-Bliesner

AbstractThe majority of future projections in the Coupled Model Intercomparison Project (CMIP5) show more frequent exceedances of the 5 mm day−1 rainfall threshold in the eastern equatorial Pacific rainfall during El Niño, previously described in the literature as an increase in “extreme El Niño events”; however, these exceedance frequencies vary widely across models, and in some projections actually decrease. Here we combine single-model large ensemble simulations with phase 5 of the Coupled Model Intercomparison Project (CMIP5) to diagnose the mechanisms for these differences. The sensitivity of precipitation to local SST anomalies increases consistently across CMIP-class models, tending to amplify extreme El Niño occurrence; however, changes to the magnitude of ENSO-related SST variability can drastically influence the results, indicating that understanding changes to SST variability remains imperative. Future El Niño rainfall intensifies most in models with 1) larger historical cold SST biases in the central equatorial Pacific, which inhibit future increases in local convective cloud shading, enabling more local warming; and 2) smaller historical warm SST biases in the far eastern equatorial Pacific, which enhance future reductions in stratus cloud, enabling more local warming. These competing mechanisms complicate efforts to determine whether CMIP5 models under- or overestimate the future impacts of climate change on El Niño rainfall and its global impacts. However, the relation between future projections and historical biases suggests the possibility of using observable metrics as “emergent constraints” on future extreme El Niño, and a proof of concept using SSTA variance, precipitation sensitivity to SST, and regional SST trends is presented.


2020 ◽  
Vol 50 (11) ◽  
pp. 3353-3373
Author(s):  
Yilong Lyu ◽  
Yuanlong Li ◽  
Jianing Wang ◽  
Jing Duan ◽  
Xiaohui Tang ◽  
...  

AbstractMooring measurements at ~140°E in the western equatorial Pacific Ocean documented greatly intensified eastward subsurface currents, which largely represent the nascent Equatorial Undercurrent, to ~67 cm s−1 in boreal summer of 2016. The eastward currents occupied the entire upper 500 m while the westward surface currents nearly disappeared. Historical in situ data observed similar variations after most El Niño events. Further analysis combining satellite and reanalysis data reveals that the eastward currents observed at ~140°E are a component of an anomalous counterclockwise circulation straddling the equator, with westward current anomalies retroflecting near the western boundary and feeding southeastward current anomalies along the New Guinea coast. A 1.5-layer reduced-gravity ocean model is able to crudely reproduce these variations, and a hierarchy of sensitivity experiments is performed to understand the underlying dynamics. The anomalous circulation is largely the delayed ocean response to equatorial wind anomalies over the central-to-eastern Pacific basin emerging in the mature stage of El Niño. Downwelling Rossby waves are generated by the reflection of equatorial Kelvin waves and easterly winds in the eastern Pacific. Upon reaching the western Pacific, the southern lobes of Rossby waves encounter the slanted New Guinea island and deflect to the equator, establishing a local sea surface height maximum and leading to the detour of westward currents flowing from the Pacific interior. Additional experiments with edited western boundary geometry confirm the importance of topography in regulating the structure of this cross-equatorial anomalous circulation.


2007 ◽  
Vol 20 (11) ◽  
pp. 2659-2674 ◽  
Author(s):  
Benjamin Pohl ◽  
Adrian J. Matthews

Abstract The Madden–Julian oscillation (MJO) is analyzed using the reanalysis zonal wind– and satellite outgoing longwave radiation–based indices of Wheeler and Hendon for the 1974–2005 period. The average lifetime of the MJO events varies with season (36 days for events whose central date occurs in December, and 48 days for events in September). The lifetime of the MJO in the equinoctial seasons (March–May and October–December) is also dependent on the state of El Niño–Southern Oscillation (ENSO). During October–December it is only 32 days under El Niño conditions, increasing to 48 days under La Niña conditions, with similar values in northern spring. This difference is due to faster eastward propagation of the MJO convective anomalies through the Maritime Continent and western Pacific during El Niño, consistent with theoretical arguments concerning equatorial wave speeds. The analysis is extended back to 1950 by using an alternative definition of the MJO based on just the zonal wind component of the Wheeler and Hendon indices. A rupture in the amplitude of the MJO is found in 1975, which is at the same time as the well-known rupture in the ENSO time series that has been associated with the Pacific decadal oscillation. The mean amplitude of the MJO is 16% larger in the postrupture (1976–2005) compared to the prerupture (1950–75) period. Before the 1975 rupture, the amplitude of the MJO is maximum (minimum) under El Niño (La Niña) conditions during northern winter, and minimum (maximum) under El Niño (La Niña) conditions during northern summer. After the rupture, this relationship disappears. When the MJO–ENSO relationship is analyzed using all-year-round data, or a shorter dataset (as in some previous studies), no relationship is found.


Sign in / Sign up

Export Citation Format

Share Document