zonal wind stress
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Linfang Zhang ◽  
Yaokun Li ◽  
Jianping Li

Abstract This paper investigates the impact of equatorial wind stress on the equatorial Ekman transport during the Indian Ocean dipole (IOD) mature phase. The results show that the equatorial zonal wind stress directly drives the meridional motion of seawater at the upper levels. In normal years, the zonal wind stress south of the equator is easterly and that north of the equator is westerly, which contributes to southward Ekman transport at the upper levels to form the climatological Indian Ocean shallow meridional overturning circulation. During the years of positive IOD events, abnormal easterly winds near the equator bring southward Ekman transport south of the equator while they bring northward Ekman transport north of the equator. This causes the seawater to move away from the equator and hence induces upwelling near the equator, which forms a pair of small circulation cells that are symmetric about the equator at the upper levels (approximately 100 m deep). The abnormal circulation cell south (north) of the equator strengthens (weakens) the southward (southward) motion south (north) of the equator. During years with negative IOD events, the opposite occurs. In addition, during the mature period of IOD, the remote sea surface temperature anomaly (SSTA) such as El Niño–Southern Oscillation (ENSO) may exert some influence on equatorial wind stress and Ekman transport anomaly but the influence is weak.


2019 ◽  
Vol 32 (5) ◽  
pp. 1641-1660 ◽  
Author(s):  
Giorgio Graffino ◽  
Riccardo Farneti ◽  
Fred Kucharski ◽  
Franco Molteni

Abstract The importance of subtropical and extratropical zonal wind stress anomalies on Pacific subtropical cell (STC) strength is assessed through several idealized and realistic numerical experiments with a global ocean model. Different zonal wind stress anomalies are employed, and their intensity is strengthened or weakened with respect to the climatological value throughout a suite of simulations. Subtropical strengthened (weakened) zonal wind stress anomalies result in increased (decreased) STC meridional mass and energy transport. When upwelling of subsurface water into the tropics is intensified (reduced), a distinct cold (warm) anomaly appears in the equatorial thermocline and up to the surface, resulting in significant tropical sea surface temperature (SST) anomalies. The use of realistic wind stress anomalies also suggests a potential impact of midlatitude atmospheric modes of variability on tropical climate through STC dynamics. The remotely driven response is compared with a set of simulations where an equatorial zonal wind stress anomaly is imposed. A dynamically distinct response is achieved, whereby the equatorial thermocline adjusts to the wind stress anomaly, resulting in significant equatorial SST anomalies as in the remotely forced simulations but with no role for STCs. Significant anomalies in Indonesian Throughflow transport are generated only when equatorial wind stress anomalies are applied, leading to remarkable heat content anomalies in the Indian Ocean. Equatorial wind stress anomalies do not involve modifications of STC transport but could set up the appropriate initial conditions for a tropical–extratropical teleconnection involving Hadley cells, exciting an STC anomalous transport, which ultimately feeds back on the tropics.


2018 ◽  
Vol 31 (16) ◽  
pp. 6245-6261 ◽  
Author(s):  
S. Coats ◽  
K. B. Karnauskas

Reconstructions of sea surface temperature (SST) based on instrumental observations suggest that the equatorial Pacific zonal SST gradient has increased over the twentieth century. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al., observations of a concurrent weakening of the zonal atmospheric (Walker) circulation are not. Here we show, using heat and momentum budget calculations on an ocean reanalysis dataset, that a seasonal weakening of the zonal atmospheric circulation is in fact consistent with cooling in the eastern equatorial Pacific (EEP) and thus an increase in the zonal SST gradient. This cooling is driven by a strengthening Equatorial Undercurrent (EUC) in response to decreased upper-ocean westward momentum associated with weakening equatorial zonal wind stress. This process can help to reconcile the seemingly contradictory twentieth-century trends in the tropical Pacific atmosphere and ocean. Moreover, it is shown that coupled general circulation models (CGCMs) do not correctly simulate this process; we identify a systematic bias in the relationship between changes in equatorial surface zonal wind stress in the EEP and EUC strength that may help to explain why observations and CGCMs have opposing trends in the zonal SST gradient over the twentieth century.


2016 ◽  
Vol 46 (5) ◽  
pp. 1575-1592 ◽  
Author(s):  
Stuart P. Bishop ◽  
Peter R. Gent ◽  
Frank O. Bryan ◽  
Andrew F. Thompson ◽  
Matthew C. Long ◽  
...  

AbstractThe Southern Ocean’s Antarctic Circumpolar Current (ACC) and meridional overturning circulation (MOC) response to increasing zonal wind stress is, for the first time, analyzed in a high-resolution (0.1° ocean and 0.25° atmosphere), fully coupled global climate simulation using the Community Earth System Model. Results from a 20-yr wind perturbation experiment, where the Southern Hemisphere zonal wind stress is increased by 50% south of 30°S, show only marginal changes in the mean ACC transport through Drake Passage—an increase of 6% [136–144 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1)] in the perturbation experiment compared with the control. However, the upper and lower circulation cells of the MOC do change. The lower cell is more affected than the upper cell with a maximum increase of 64% versus 39%, respectively. Changes in the MOC are directly linked to changes in water mass transformation from shifting surface isopycnals and sea ice melt, giving rise to changes in surface buoyancy forcing. The increase in transport of the lower cell leads to upwelling of warm and salty Circumpolar Deep Water and subsequent melting of sea ice surrounding Antarctica. The MOC is commonly supposed to be the sum of two opposing components: a wind- and transient-eddy overturning cell. Here, the transient-eddy overturning is virtually unchanged and consistent with a large-scale cancellation of localized regions of both enhancement and suppression of eddy kinetic energy along the mean path of the ACC. However, decomposing the time-mean overturning into a time- and zonal-mean component and a standing-eddy component reveals partial compensation between wind-driven and standing-eddy components of the circulation.


2015 ◽  
Vol 28 (23) ◽  
pp. 9121-9142 ◽  
Author(s):  
Felicity S. Graham ◽  
Jaclyn N. Brown ◽  
Andrew T. Wittenberg ◽  
Neil J. Holbrook

Abstract The complex nature of the El Niño–Southern Oscillation (ENSO) is often simplified through the use of conceptual models, each of which offers a different perspective on the ocean–atmosphere feedbacks underpinning the ENSO cycle. One theory, the unified oscillator, combines a variety of conceptual frameworks in the form of a coupled system of delay differential equations. The system produces a self-sustained oscillation on interannual time scales. While the unified oscillator is assumed to provide a more complete conceptual framework of ENSO behaviors than the models it incorporates, its formulation and performance have not been systematically assessed. This paper investigates the accuracy of the unified oscillator through its ability to replicate the ENSO cycle modeled by flux-forced output from the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM). The anomalous sea surface temperature equation reproduces the main features of the corresponding tendency modeled by ACCESS-OM reasonably well. However, the remaining equations for the thermocline depth anomaly and zonal wind stress anomalies are unable to accurately replicate the corresponding tendencies in ACCESS-OM. Modifications to the unified oscillator, including a diagnostic form of the zonal wind stress anomaly equations, improve its ability to emulate simulated ENSO tendencies. Despite these improvements, the unified oscillator model is less adept than the delayed oscillator model it incorporates in capturing ENSO behavior in ACCESS-OM, bringing into question its usefulness as a unifying ENSO framework.


2015 ◽  
Vol 28 (8) ◽  
pp. 3250-3274 ◽  
Author(s):  
Lin Chen ◽  
Tim Li ◽  
Yongqiang Yu

Abstract The mechanisms for El Niño–Southern Oscillation (ENSO) amplitude change under global warming are investigated through quantitative assessment of air–sea feedback processes in present-day and future climate simulations of four models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two models (MPI-ESM-MR and MRI-CGCM3) project strengthened ENSO amplitude, whereas the other two models (CCSM4 and FGOALS-g2) project weakened ENSO amplitude. A mixed layer heat budget diagnosis shows that the major cause of the projected ENSO amplitude difference between the two groups is attributed to the changes of the thermocline and zonal advective feedbacks. A weaker (stronger) equatorial thermocline response to a unit anomalous zonal wind stress forcing in the Niño-4 region is found in CCSM4 and FGOALS-g2 (MPI-ESM-MR and MRI-CGCM3). The cause of the different response arises from the change in the meridional scale of ENSO. A narrower (wider) meridional width of sea surface temperature (SST) and zonal wind stress anomalies causes a strengthening (weakening) of the equatorial thermocline response and thus stronger Bjerknes and zonal advective feedbacks, as the subsurface temperature and zonal current anomalies depend on the thermocline response; consequently, the ENSO amplitude increases (decreases). The change of ENSO meridional width is caused by the change in mean meridional overturning circulation in the equatorial Pacific Ocean, which depends on change of mean wind stress and SST warming patterns under global warming.


2014 ◽  
Vol 27 (19) ◽  
pp. 7385-7393 ◽  
Author(s):  
Amy Solomon

Abstract Initialized decadal hindcasts are used to assess simulations of 1970–2009 equatorial Pacific SST, zonal wind stress, and surface flux trends. Initialized hindcasts are useful to assess how well the models simulate observed trends, as well as how simulations of observed trends (due primarily to natural variability) differ from ensemble-mean forecasted trends (due to the response to an increase in external forcing). All models forecast a statistically significant warming trend in both the warm-pool and cold-tongue regions. However, while the warm-pool warming trend is within the observed estimates, the cold-tongue warming trend is an order of magnitude larger than an ENSO residual estimated using SST instrumental reconstructions. Multimodel ensemble means formed using forecasts 6–10 years from initialization with 40 ensemble members do not produce an unambiguous zonal SST gradient response to an increase in external forcing. Systematic biases are identified in forecasts of surface fluxes. For example, in the warm-pool region all year-1 forecasts produce SST trends similar to observations but ocean mixed layer and net surface heat flux trends with an opposite sign to air–sea datasets. In addition, year-1 forecasts produce positive shortwave feedbacks on decadal time scales, whereas 6–10-yr forecasts produce negative or statistically insignificant shortwave flux feedbacks on decadal time scales, suggesting sensitivity to circulations forced by the initialized ocean state. In the cold-tongue region initialized ensembles forecast positive net radiative flux trends even though shortwave flux trends are negative (i.e., for increasing cloudiness). This is inconsistent with air–sea datasets, which uniformly show that the net surface radiative flux feedback is a damping of the underlying SSTs.


2014 ◽  
Vol 28 (9) ◽  
pp. 909-926 ◽  
Author(s):  
Nina N. Ridder ◽  
Matthew H. England

2014 ◽  
Vol 27 (7) ◽  
pp. 2577-2587 ◽  
Author(s):  
Joke F. Lübbecke ◽  
Michael J. McPhaden

Abstract A decadal change in the character of ENSO was observed around year 2000 toward weaker-amplitude, higher-frequency events with an increased occurrence of central Pacific El Niños. Here these changes are assessed in terms of the Bjerknes stability index (BJ index), which is a measure of the growth rate of ENSO-related SST anomalies. The individual terms of the index are calculated from ocean reanalysis products separately for the time periods 1980–99 and 2000–10. The spread between the products is large, but they show a robust weakening of the thermocline feedback due to a reduced thermocline slope response to anomalous zonal wind stress as well as a weakened wind stress response to eastern equatorial Pacific SST anomalies. These changes are consistent with changes in the background state of the tropical Pacific: cooler mean SST in the eastern and central equatorial Pacific results in reduced convection there together with a westward shift in the ascending branch of the Walker circulation. This shift leads to a weakening in the relationship between eastern Pacific SST and longitudinally averaged equatorial zonal wind stress. Also, despite a steeper mean thermocline slope in the more recent period, the thermocline slope response to wind stress anomalies weakened due to a smaller zonal wind fetch that results from ENSO-related wind anomalies being more confined to the western basin. As a result, the total BJ index is more negative, corresponding to a more strongly damped system in the past decade compared to the 1980s and 1990s.


Sign in / Sign up

Export Citation Format

Share Document