Dependency of Feedbacks on Forcing and Climate State in Physics Parameter Ensembles

2011 ◽  
Vol 24 (24) ◽  
pp. 6440-6455 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Julia C. Hargreaves ◽  
James D. Annan ◽  
Tokuta Yokohata ◽  
Ayako Abe-Ouchi

Abstract Climate sensitivity is one of the most important metrics for future climate projections. In previous studies the climate of the last glacial maximum has been used to constrain the range of climate sensitivity, and similarities and differences of temperature response to the forcing of the last glacial maximum and to idealized future forcing have been investigated. The feedback processes behind the response have not, however, been fully explored in a large model parameter space. In this study, the authors first examine the performance of various feedback analysis methods that identify important feedbacks for a physics parameter ensemble in experiments simulating both past and future climates. The selected methods are then used to reveal the relationship between the different ensemble experiments in terms of individual feedback processes. For the first time, all of the major feedback processes for an ensemble of paleoclimate simulations are evaluated. It is shown that the feedback and climate sensitivity parameters depend on the nature of the forcing and background climate state. The forcing dependency arises through the shortwave cloud feedback while the state dependency arises through the combined water vapor and lapse-rate feedback. The forcing dependency is, however, weakened when the feedback is estimated from the forcing that includes tropospheric adjustments. Despite these dependencies, past climate can still be used to provide a useful constraint on climate sensitivity as long as the limitation is properly taken into account because the strength of each feedback correlates reasonably well between the ensembles. It is, however, shown that the physics parameter ensemble does not cover the range of results simulated by structurally different models, which suggests the need for further study exploring both structural and parameter uncertainties.


2021 ◽  
Vol 17 (2) ◽  
pp. 805-824
Author(s):  
André Paul ◽  
Stefan Mulitza ◽  
Rüdiger Stein ◽  
Martin Werner

Abstract. We present a climatology of the near-sea-surface temperature (NSST) anomaly and the sea-ice extent during the Last Glacial Maximum (LGM, 23 000–19 000 years before present) mapped on a global regular 1∘×1∘ grid. It is an extension of the Glacial Atlantic Ocean Mapping (GLAMAP) reconstruction of the Atlantic NSST based on the faunal and floral assemblage data of the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project and several recent estimates of the LGM sea-ice extent. Such a gridded climatology is highly useful for the visualization of the LGM climate, calculation of global and regional NSST averages, and estimation of the equilibrium climate sensitivity, as well as a boundary condition for atmospheric general circulation models. The gridding of the sparse NSST reconstruction was done in an optimal way using the Data-Interpolating Variational Analysis (DIVA) software, which takes into account the uncertainty in the reconstruction and includes the calculation of an error field. The resulting Glacial Ocean Map (GLOMAP) confirms the previous findings by the MARGO project regarding longitudinal and meridional NSST differences that were greater than today in all oceans. Taken at face value, the estimated global and tropical cooling would imply an equilibrium climate sensitivity at the lower end of the currently accepted range. However, because of anticipated changes in the seasonality and thermal structure of the upper ocean during the LGM as well as uneven spatial sampling, the estimated cooling and implied climate sensitivity are likely to be biased towards lower values.



2021 ◽  
Author(s):  
Guillaume Leduc ◽  
Etienne Longrain ◽  
Pierre-Henri Blard ◽  
Julien Charreau

<p>Reconstructing the spatial and temporal variabilities of the vertical atmospheric temperature gradient (lapse rate, LR) is key to predict the evolution of glaciers in a changing climate. Variations in this parameter may amplify or mitigate the future warming at high elevation, implying contrasted impacts on the stability of glaciers. Several regional studies suggested that the tropical LR was steeper than today during the last glacial maximum (LGM) (Loomis et al., 2017; Blard et al.,  2007), while another study concluded that the LGM lapse rate was similar than today (Tripati et al., 2014).</p><p>Here we combine published LGM sea surface temperatures (SSTs) data and LGM moraines dated by cosmogenic nuclides to reconstruct the lapse rate along the American Cordillera. To do so, we combined paleo-Equilibrium Line Altitudes (ELAs) of glaciers with independent precipitation proxies to derive high latitude atmospheric temperatures. The whole dataset includes 34 paleo-glaciated sites along a North-South transect in the American Cordillera, ranging in latitude from 40°N to 36°S. Our reconstruction indicates that the lapse rate (LR) was steeper than today in the tropical American Cordillera (20°N – 11°S). The average ΔLR (LGM – Modern) for this Tropical Andes region (20°N – 11°S) is ~-1.5 °C.km<sup>-1</sup> (20 sites). At higher latitude, in both hemispheres (Central Andes, 15°S – 35°S (8 sites); Sierra Nevada and San Bernardino mountains (40°N – 34°N) (6 sites), the LR was constant during the LGM. </p><p> Our results show that a drier climate during the LGM is systematically associated with a steeper LR. Modification of LR during LGM was already observed from other tropical regions, in Hawaii-Central Pacific (Blard et al 2007), and in Eastern Africa (Loomis et al., 2017). Similarly, in these regions, precipitation did not increase during the LGM. With this multi-site exhaustive synthesis, we make a case that drier Tropical LGM conditions induce a steeper LR. This corresponds to an amplification of cooling at high altitude during the LGM. These results highlight the necessity to consider LR variations in modelling future climate. In a warmer and wetter Earth, temperature increase may be amplified at high elevation, due to smoother LR. If valid, this mechanism implies that tropical glaciers are more vulnerable than predicted by current climate modelling.</p><p> </p><p>References</p><p>Blard, P.-H., Lavé, J., Pik, R., Wagnon, P., & Bourlès, D. (2007). Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature, 449(7162), 591.</p><p>Loomis, S. E., Russell, J. M., Verschuren, D., Morrill, C., De Cort, G., Damsté, J. S. S., … & Kelly, M. A. (2017). The tropical lapse rate steepened during the Last Glacial Maximum. Science advances, 3(1), e1600815.</p><p>Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D., Mitchell, J. L., & Beaufort, L. (2014). Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience, 7(3), 205.</p>



2012 ◽  
Vol 39 (24) ◽  
Author(s):  
J. C. Hargreaves ◽  
J. D. Annan ◽  
M. Yoshimori ◽  
A. Abe‐Ouchi


2020 ◽  
Author(s):  
Pierre-Henri Blard ◽  
Etienne Legrain ◽  
Julien Charreau

<p>Reconstructing the spatial and temporal variabilities of the vertical atmospheric temperature gradient (lapse rate, LR) is key to predict the evolution of glaciers in a changing climate. Variations in this parameter may indeed amplify or mitigate the future warming at high elevation, implying contrasted impacts on the stability of glaciers. Several regional studies suggested that the tropical LR was steeper than today during the last glacial maximum (LGM) (Loomis et al., 2017; Blard et al., 2007), while another study concluded that the LGM lapse rate was similar than today (Tripati et al., 2014).</p><p>Here we combine published LGM sea surface temperatures (SSTs) data and LGM moraines dated by cosmogenic nuclides to reconstruct the lapse rate along the American Cordillera. To do so, we combined paleo-Equilibrium Line Altitudes (ELAs) of glaciers with independent precipitation proxies to derive high latitude atmospheric temperatures. The whole dataset includes 34 paleo-glaciated sites along a North-South transect in the American Cordillera, ranging in latitude from 40°N to 36°S. Our reconstruction indicates that the lapse rate (LR) was steeper than today in the tropical American Cordillera (20°N – 11°S). The average ΔLR (LGM – Modern) for this Tropical Andes region (20°N – 11°S) is ~-2 °C.km<sup>-1</sup> (20 sites). At higher latitude, in both hemispheres, the LR was constant or decreased during the LGM. More precisely, this ΔLR change in the Central Andes (15°S – 35°S) is between 0 and 1°C.km<sup>-1</sup> (8 sites), while it is ~1 °C.km<sup>-1</sup> in Sierra Nevada and San Bernardino mountains (40°N – 34°N) (6 sites).</p><p> Our results show that a drier climate during the LGM is systematically associated with a steeper LR. Modification of LR during the LGM was already observed from other tropical regions, in Hawaii-Central Pacific (Blard et al 2007), and in Eastern Africa (Loomis et al., 2017). Similarly, in these regions, precipitation did not increase during the LGM. With this multi-site exhaustive synthesis, we make a case that drier Tropical LGM conditions induce a steeper LR. This corresponds to an amplification of cooling at high altitude during the LGM. These results highlight the necessity to consider LR variations in modelling future climate. In a warmer and wetter Earth, temperature increase may be amplified at high elevation, due to smoother LR. If true, this mechanism indicates that tropical glaciers are more threatened by climate change than predicted by current climate modelling.</p><p><strong>References</strong></p><p>Blard, P.-H., Lavé, J., Pik, R., Wagnon, P., & Bourlès, D. (2007). Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature, 449(7162), 591.</p><p>Loomis, S. E., Russell, J. M., Verschuren, D., Morrill, C., De Cort, G., Damsté, J. S. S., … & Kelly, M. A. (2017). The tropical lapse rate steepened during the Last Glacial Maximum. Science advances, 3(1), e1600815.</p><p>Tripati, A. K., Sahany, S., Pittman, D., Eagle, R. A., Neelin, J. D., Mitchell, J. L., & Beaufort, L. (2014). Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience, 7(3), 205.</p>



2017 ◽  
Author(s):  
Chris Brierley ◽  
Ilana Wainer

Abstract. Tropical Atlantic Variability (TAV) plays an important role in driving year-to-year changes in rainfall over Africa and South America. In this study, its response to global climate change is investigated through a series of multi-model experiments. We explore the leading modes of TAV during the historical, last glacial maximum, mid-Holocene and future simulations in the multi-model ensemble known as PMIP3/CMIP5. Despite their known sea surface temperature biases, most of the models are able to capture the Tropical Atlantic's two leading modes of SST-variability patterns – the Atlantic Meridional Mode (AMM) and the Atlantic zonal mode (also called the Atlantic Niño or ATL3). The ensemble suggests that AMM amplitude was less during the mid-Holocene and increased during the last glacial maximum; but is equivocal about future changes. ATL3 appears stronger under both the last glacial maximum and future climate changes, with little consistent message about the mid-Holocene. The patterns and the regions under the influence of the two modes alters under climate change – in concert with changes in the mean climate state. Both modes demonstrate a coupling with the equatorial Pacific that depends on the climate period being considered – especially for the ATL3 mode of equatorial Pacific. In the future climate experiment, the equatorial mode weakens, the whole northern hemisphere warms up while the south Atlantic displays an hemisphere-wide weak oscillating pattern. For the LGM, the AMM projects onto a pattern that resembles the Pan-Atlantic Decadal Oscillation. No robust relationships between the amplitude of the zonal and meridional temperature gradients and their respective variability was found.



Science ◽  
2011 ◽  
Vol 334 (6061) ◽  
pp. 1385-1388 ◽  
Author(s):  
A. Schmittner ◽  
N. M. Urban ◽  
J. D. Shakun ◽  
N. M. Mahowald ◽  
P. U. Clark ◽  
...  


2020 ◽  
Author(s):  
André Paul ◽  
Stefan Mulitza ◽  
Rüdiger Stein ◽  
Martin Werner

Abstract. We present a climatology of the sea-surface temperature (SST) anomaly and the sea-ice extent during the Last Glacial Maximum (LGM, 23 000–19 000 years before present) mapped on a global regular 1° × 1° grid. It is an extension of the Glacial Atlantic Ocean Mapping (GLAMAP) reconstruction of the Atlantic SST based on the results of the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project and several recent estimates of the LGM sea-ice extent. Such a gridded climatology is highly useful for the visualization of the LGM climate, calculation of global and regional SST averages and estimation of the equilibrium climate sensitivity, as well as a boundary condition for atmospheric general circulation models. The gridding of the sparse SST reconstruction was done in an optimal way using the Data-Interpolating Variational Analysis (DIVA) software, which takes into account the uncertainty on the reconstruction and includes the calculation of an error field. The resulting Glacial Ocean Map (GLOMAP) confirmed the previous findings by the MARGO project regarding longitudinal and meridional SST differences that were greater than today in all oceans and an equilibrium climate sensitivity at the lower end of the currently accepted range.



Sign in / Sign up

Export Citation Format

Share Document