aerosol radiative forcing
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 93)

H-INDEX

47
(FIVE YEARS 7)

2021 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Kesar Chand ◽  
Jagdish Chandra Kuniyal ◽  
Shruti Kanga ◽  
Raj Paul Guleria ◽  
Gowhar Meraj ◽  
...  

The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR.


2021 ◽  
Author(s):  
Simon Felix Reifenberg ◽  
Anna Martin ◽  
Matthias Kohl ◽  
Zaneta Hamryszczak ◽  
Ivan Tadic ◽  
...  

Abstract. Aerosols influence the Earth’s energy balance through direct radiative effects and indirectly by altering the cloud micro-physics. Anthropogenic aerosol emissions dropped considerably when the global COVID–19 pandemic resulted in severe restraints on mobility, production, and public life in spring 2020. Here we assess the effects of these reduced emissions on direct and indirect aerosol radiative forcing over Europe, excluding contributions from contrails. We simulate the atmospheric com- position with the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model in a baseline (business as usual) and a reduced emission scenario. The model results are compared to aircraft observations from the BLUESKY aircraft campaign performed in May/June 2020 over Europe. The model agrees well with most of the observations, except for sulfur dioxide, particulate sulfate and nitrate in the upper troposphere, likely due to a somewhat biased representation of stratospheric aerosol chemistry and missing information about volcanic eruptions which could have influenced the campaign. The comparison with a business as usual scenario shows that the largest relative differences for tracers and aerosols are found in the upper troposphere, around the aircraft cruise altitude, due to the reduced aircraft emissions, while the largest absolute changes are present at the surface. We also find an increase in shortwave radiation of 0.327 ± 0.105 Wm−2 at the surface in Europe for May 2020, solely attributable to the direct aerosol effect, which is dominated by decreased aerosol scattering of sunlight, followed by reduced aerosol absorption, caused by lower concentrations of inorganic and black carbon aerosols in the troposphere. A further in- crease in shortwave radiation from aerosol indirect effects was found to be much smaller than its variability. Impacts on ice crystal- and cloud droplet number concentrations and effective crystal radii are found to be negligible.


2021 ◽  
Vol 21 (23) ◽  
pp. 17727-17741
Author(s):  
Zhonghua Zheng ◽  
Matthew West ◽  
Lei Zhao ◽  
Po-Lun Ma ◽  
Xiaohong Liu ◽  
...  

Abstract. Aerosol mixing state is an important emergent property that affects aerosol radiative forcing and aerosol–cloud interactions, but it has not been easy to constrain this property globally. This study aims to verify the global distribution of aerosol mixing state represented by modal models. To quantify the aerosol mixing state, we used the aerosol mixing state indices for submicron aerosol based on the mixing of optically absorbing and non-absorbing species (χo), the mixing of primary carbonaceous and non-primary carbonaceous species (χc), and the mixing of hygroscopic and non-hygroscopic species (χh). To achieve a spatiotemporal comparison, we calculated the mixing state indices using output from the Community Earth System Model with the four-mode version of the Modal Aerosol Module (MAM4) and compared the results with the mixing state indices from a benchmark machine-learned model trained on high-detail particle-resolved simulations from the particle-resolved stochastic aerosol model PartMC-MOSAIC. The two methods yielded very different spatial patterns of the mixing state indices. In some regions, the yearly averaged χ value computed by the MAM4 model differed by up to 70 percentage points from the benchmark values. These errors tended to be zonally structured, with the MAM4 model predicting a more internally mixed aerosol at low latitudes and a more externally mixed aerosol at high latitudes compared to the benchmark. Our study quantifies potential model bias in simulating mixing state in different regions and provides insights into potential improvements to model process representation for a more realistic simulation of aerosols towards better quantification of radiative forcing and aerosol–cloud interactions.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1583
Author(s):  
Krzysztof M. Markowicz ◽  
Iwona S. Stachlewska ◽  
Olga Zawadzka-Manko ◽  
Dongxiang Wang ◽  
Wojciech Kumala ◽  
...  

The Poland-AOD aerosol research network was established in 2011 to improve aerosol–climate interaction knowledge and provide a real-time and historical, comprehensive, and quantitative database for the aerosol optical properties distribution over Poland. The network consists of research institutions and private owners operating 10 measurement stations and an organization responsible for aerosol model transport simulations. Poland-AOD collaboration provides observations of spectral aerosol optical depth (AOD), Ångstrom Exponent (AE), incoming shortwave (SW) and longwave (LW) radiation fluxes, vertical profiles of aerosol optical properties and surface aerosol scattering and absorption coefficient, as well as microphysical particle properties. Based on the radiative transfer model (RTM), the aerosol radiative forcing (ARF) and the heating rate are simulated. In addition, results from GEM-AQ and WRF-Chem models (e.g., aerosol mass mixing ratio and optical properties for several particle chemical components), and HYSPLIT back-trajectories are used to interpret the results of observation and to describe the 3D aerosol optical properties distribution. Results of Poland-AOD research indicate progressive improvement of air quality and atmospheric turbidity during the last decade. The AOD was reduced by about 0.02/10 yr (at 550 nm), which corresponds to positive trends in ARF. The estimated clear-sky ARF trend is 0.34 W/m2/10yr and 0.68 W/m2/10yr, respectively, at TOA and at Earth’s surface. Therefore, reduction in aerosol load observed in Poland can significantly contribute to climate warming.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1555
Author(s):  
Tatiana B. Zhuravleva ◽  
Ilmir M. Nasrtdinov ◽  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann

We present the first box model simulation results aimed at identification of possible effects of the atmospheric photochemical evolution of the organic component of biomass burning (BB) aerosol on the aerosol radiative forcing (ARF) and its efficiency (ARFE). The simulations of the dynamics of the optical characteristics of the organic aerosol (OA) were performed using a simple parameterization developed within the volatility basis set framework and adapted to simulate the multiday BB aerosol evolution in idealized isolated smoke plumes from Siberian fires (without dilution). Our results indicate that the aerosol optical depth can be used as a good proxy for studying the effect of the OA evolution on the ARF, but variations in the scattering and absorbing properties of BB aerosol can also affect its radiative effects, as evidenced by variations in the ARFE. Changes in the single scattering albedo (SSA) and asymmetry factor, which occur as a result of the BB OA photochemical evolution, may either reduce or enhance the ARFE as a result of their competing effects, depending on the initial concentration OA, the ratio of black carbon to ОА mass concentrations and the aerosol photochemical age in a complex way. Our simulation results also reveal that (1) the ARFE at the top of the atmosphere is not significantly affected by the OA oxidation processes compared to the ARFE at the bottom of the atmosphere, and (2) the dependence of ARFE in the atmospheric column and on the BB aerosol photochemical ages almost mirrors the corresponding dependence of SSA.


Sign in / Sign up

Export Citation Format

Share Document