A Numerical Daily Air Quality Forecast System for The Pacific Northwest

2004 ◽  
Vol 85 (4) ◽  
pp. 549-562 ◽  
Author(s):  
Joseph Vaughan ◽  
Brian Lamb ◽  
Chris Frei ◽  
Rob Wilson ◽  
Clint Bowman ◽  
...  
2009 ◽  
Vol 9 (6) ◽  
pp. 27063-27098
Author(s):  
F. L. Herron-Thorpe ◽  
J. K. Vaughan ◽  
B. K. Lamb ◽  
G. H. Mount

Abstract. Results from a regional air quality forecast model, AIRPACT-3, are compared to OMI tropospheric NO2 integrated column densities for an 18 month period over the Pacific Northwest. AIRPACT column densities were well correlated with cloud-free monthly averages of tropospheric NO2 (R=0.75) to NASA retrievals for months without wildfires, but were poorly correlated with significant model overpredictions (R=0.21) for months with wildfires when OMI and AIRPACT were compared over the entire domain. AIRPACT forecasted higher NO2 in some US urban areas, and lower NO2 in many Canadian urban areas, when compared to OMI. There are significant changes in results after spatially averaging model results to the daily OMI swath. Also, it is shown that applying the averaging kernel to model results in cloudy conditions has a large effect, but applying the averaging kernel in cloud free conditions has little effect. The KNMI and NASA retrievals of tropospheric NO2 from OMI (collection 3) are compared. The NASA product is shown to be significantly different than the KNMI tropospheric NO2 product, i.e. July 2007 (R=0.60) and January 2008 (R=0.69).


2010 ◽  
Vol 10 (18) ◽  
pp. 8839-8854 ◽  
Author(s):  
F. L. Herron-Thorpe ◽  
B. K. Lamb ◽  
G. H. Mount ◽  
J. K. Vaughan

Abstract. Results from a regional air quality forecast model, AIRPACT-3, are compared to OMI tropospheric NO2 integrated column densities for an 18 month period over the Pacific Northwest. AIRPACT column densities are well correlated (r=0.75) to cloud-free (<35%) retrievals of tropospheric NO2 for monthly averages without wildfires, but are poorly correlated (r=0.21) with significant model over-predictions for months with wildfires when OMI and AIRPACT are compared over the entire domain. AIRPACT predicts higher NO2 in some northwestern US urban areas, and lower NO2 in the Vancouver, BC urban area, when compared to OMI. Model results are spatially averaged to the daily OMI swath. The Dutch KNMI (DOMINO) and NASA (Standard Product) retrievals of tropospheric NO2 from OMI (Collection-3) are compared. The NASA product is shown to be significantly different than the KNMI tropospheric NO2 product. The average difference in tropospheric columns, after applying the averaging kernels of the respective products to the model results, is shown to be larger in the summer (±50%) than winter (±20%).


2014 ◽  
Vol 14 (16) ◽  
pp. 23201-23236 ◽  
Author(s):  
P. A. Cleary ◽  
N. Fuhrman ◽  
L. Schulz ◽  
J. Schafer ◽  
J. Fillingham ◽  
...  

Abstract. Air quality forecast models typically predict large ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline Differential Optical Absorption Spectroscopy (DOAS) observations in southeastern Wisconsin, and as predicted by the National Air Quality Forecast System. From 2008–2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008–2010 measurements of ambient ozone conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI and Muskegon, MI up to 6 times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha with little dependence on position of the ferry or temperature but with highest differences during evening and night. Concurrent ozone forecast images from National Weather System's National Air Quality Forecast System in the upper Midwestern region surrounding Lake Michigan were saved over the ferry ozone sampling period in 2009. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. The model 1 and 8 h ozone mean biases were both 12 ppb higher than observed ozone, and maximum daily 1 h ozone mean bias was 10 ppb, indicating substantial ozone over-prediction over water. Trends in the bias with respect to location and time of day or month were also explored showing non-uniformity in model bias. Extreme ozone events were predicted by the model but not observed by ferry measurements.


2011 ◽  
Vol 13 (12) ◽  
pp. 3437 ◽  
Author(s):  
Claudio Carnevale ◽  
Giovanna Finzi ◽  
Enrico Pisoni ◽  
Vikas Singh ◽  
Marialuisa Volta

Sign in / Sign up

Export Citation Format

Share Document