scholarly journals Understanding Anomalous Synoptic Eddy Vorticity Forcing in Pacific–North American Teleconnection Pattern Events

2018 ◽  
Vol 75 (12) ◽  
pp. 4287-4312 ◽  
Author(s):  
Jie Song

Abstract Utilizing a decomposition of anomalous eddy vorticity forcing (EVF) proposed by Song in 2016 and a modified Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model, this study provides a different understanding of physical mechanisms that are responsible for the formation of the anomalous synoptic EVF (SEVF) associated with Pacific–North American teleconnection pattern (PNA) events. A series of short-term control experiments (CEs) and initial-value modified experiments (IVMEs) is conducted. In each case of CEs, there are no obvious PNA-like circulation anomalies. IVMEs are exactly the same as CEs except that appropriate small perturbations are introduced into the initial-value fields of CEs. The modified initial-value fields led to a gradual development of the PNA-like flow anomalies in IVMEs. Based on these numerical results, deformations of the synoptic eddy due to the emergence of the PNA pattern can be easily acquired by subtracting the synoptic eddy in CEs from the synoptic eddy in IVMEs . The anomalous SEVF associated with the PNA events in the model can be decomposed into ensembles of two linear and interaction terms (EVF1 and EVF2) and a nonlinear self-interaction term (EVF3). It is demonstrated that the physical essence of the anomalous SEVF associated with the PNA events is a competition result between EVF1 plus EVF2 and EVF3. Results also indicate that the different signs of SEVF associated with the positive and negative PNA events are not necessarily related to the different tilts of the synoptic eddy.

2016 ◽  
Vol 73 (8) ◽  
pp. 2985-3007 ◽  
Author(s):  
Jie Song

Abstract This study proposes an anomalous eddy vorticity forcing (EVF) decomposing procedure to investigate physical mechanisms responsible for the formation of the anomalous EVF associated with North Atlantic Oscillation (NAO) events. Utilizing the Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model, a series of NAO initial-value short-term experiments are conducted. Applying the EVF decomposing procedure to the results of these experiments, the anomalous nonlinear EVF associated with the NAO events in the model can be decomposed into several fundamental linear eddy–eddy interaction terms and an unimportant nonlinear eddy–eddy interaction term. Compared with the NAO-free situation, synoptic-scale eddies have faster (slower) eastward phase speeds during the positive (negative) NAO events. Through a synoptic-scale eddy–eddy interaction mechanism, the behaviors of anomalous EVF components in the positive (negative) NAO events are well explained by synoptic-scale eddies with faster (slower) eastward phase speeds. Therefore, synoptic-scale eddies with faster (slower) eastward phase speeds are responsible for the development of the anomalous EVF associated with positive (negative) NAO events. Note that at the initial stage of the NAO initial-value experiments, the faster (slower) phase speeds of the synoptic-scale eddies are specified by modifying the initial-value fields and then are amplified/maintained by the strengthening (weakening) zonal wind in the middle and high latitudes associated with the approaching positive (negative)-phase NAO. Therefore, this study indicates that the properties of the synoptic-scale eddies at the initial stage determine the upcoming NAO anomalies.


2011 ◽  
Vol 137 (655) ◽  
pp. 329-346 ◽  
Author(s):  
Christian Franzke ◽  
Steven B. Feldstein ◽  
Sukyoung Lee

2017 ◽  
Vol 30 (9) ◽  
pp. 3139-3155 ◽  
Author(s):  
Ying Dai ◽  
Steven B. Feldstein ◽  
Benkui Tan ◽  
Sukyoung Lee

The mechanisms that drive the Pacific–North American (PNA) teleconnection pattern with and without its canonical tropical convection pattern are investigated with daily ERA-Interim and NOAA OLR data (the former pattern is referred to as the convective PNA, and the latter pattern is referred to as the nonconvective PNA). Both the convective and nonconvective positive PNA are found to be preceded by wave activity fluxes associated with a Eurasian wave train. These wave activity fluxes enter the central subtropical Pacific, a location that is favorable for barotropic wave amplification, just prior to the rapid growth of the PNA. The wave activity fluxes are stronger for the positive nonconvective PNA, suggesting that barotropic amplification plays a greater role in its development. The negative convective PNA is also preceded by a Eurasian wave train, whereas the negative nonconvective PNA grows from the North Pacific contribution to a circumglobal teleconnection pattern. Driving by high-frequency eddy vorticity fluxes is largest for the negative convective PNA, indicating that a positive feedback may be playing a more dominant role in its development. The lifetimes of convective PNA events are found to be longer than those of nonconvective PNA events, with the former (latter) persisting for about three (two) weeks. Furthermore, the frequency of the positive (negative) convective PNA is about 40% (60%) greater than that of the positive (negative) nonconvective PNA.


2011 ◽  
Vol 32 (7) ◽  
pp. 1128-1134 ◽  
Author(s):  
Yun-Young Lee ◽  
Jong-Seong Kug ◽  
Gyu-Ho Lim ◽  
Masahiro Watanabe

2009 ◽  
Vol 22 (19) ◽  
pp. 5135-5148 ◽  
Author(s):  
Yan Ge ◽  
Gavin Gong ◽  
Allan Frei

Abstract The wintertime Pacific–North American (PNA) teleconnection pattern has previously been shown to influence springtime snow conditions over portions of North America. This paper develops a more complete physical understanding of this linkage across the continent, using a recently released long-term, continental-scale gridded North American snow depth dataset and the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis data. An empirical orthogonal function–based filtering process is used to identify and isolate the interannual snow depth variations associated with PNA. Then linear and partial correlations are employed to investigate the physical mechanisms that link winter PNA with spring snow depth. In the positive phase of PNA, the enhanced PNA pressure centers lead to warmer temperatures over northwestern North America and less precipitation at midlatitudes. The temperature and precipitation pathways act independently and in distinct geographical regions, and together they serve to reduce winter snow depth across much of North America. Winter anomalies in the snow depth field then tend to persist into spring. Dynamic mechanisms responsible for the PNA-influenced North American precipitation and temperature anomalies, involving moisture transport and cold air intrusions, are confirmed in this study and also extended to continental snow depth anomalies.


Sign in / Sign up

Export Citation Format

Share Document