Impact of entrainment-mixing and turbulent fluctuations on droplet size distributions in a cumulus cloud: An investigation using Lagrangian microphysics with a sub-grid-scale model

Author(s):  
Kamal Kant Chandrakar ◽  
Wojciech W. Grabowski ◽  
Hugh Morrison ◽  
George H. Bryan

AbstractEntrainment-mixing and turbulent fluctuations critically impact cloud droplet size distributions (DSDs) in cumulus clouds. This problem is investigated via a new sophisticated modeling framework using the CM1 LES model and a Lagrangian cloud microphysics scheme – the “super-droplet method” (SDM) – coupled with sub-grid-scale (SGS) schemes for particle transport and supersaturation fluctuations. This modeling framework is used to simulate a cumulus congestus cloud. Average DSDs in different cloud regions show broadening from entrainment and secondary cloud droplet activation (activation above the cloud base). DSD width increases with increasing entrainment-induced dilution as expected from past work, except in the most diluted cloud regions. The new modeling framework with SGS transport and supersaturation fluctuations allows a more sophisticated treatment of secondary activation compared to previous studies. In these simulations, it contributes about 25%of the cloud droplet population and impacts DSDs in two contrastingways: narrowing in extremely diluted regions and broadening in relatively less diluted. SGS supersaturation fluctuations contribute significantly to an increase in DSD width via condensation growth and evaporation. Mixing of super-droplets from SGS velocity fluctuations also broadens DSDs. The relative dispersion (ratio of DSD dispersion and mean radius) negatively correlates with grid-scale vertical velocity in updrafts, but is positively correlated in downdrafts. The latter is from droplet activation driven by positive SGS supersaturation fluctuations in grid-mean subsaturated conditions. Finally, the sensitivity to model grid length is evaluated. The SGS schemes have greater influence as the grid length is increased, and they partially compensate for the reduced model resolution.

1973 ◽  
Vol 12 (12) ◽  
pp. 2838 ◽  
Author(s):  
Jerry P. Gollub ◽  
Ilan Chabay ◽  
W. H. Flygare

2011 ◽  
Vol 68 (12) ◽  
pp. 2921-2929 ◽  
Author(s):  
Jennifer L. Bewley ◽  
Sonia Lasher-Trapp

Abstract A modeling framework representing variations in droplet growth by condensation, resulting from different saturation histories experienced as a result of entrainment and mixing, is used to predict the breadth of droplet size distributions observed at different altitudes within trade wind cumuli observed on 10 December 2004 during the Rain in Cumulus over the Ocean (RICO) field campaign. The predicted droplet size distributions are as broad as those observed, contain similar numbers of droplets, and are generally in better agreement with the observations when some degree of inhomogeneous droplet evaporation is considered, allowing activation of newly entrained cloud condensation nuclei. The variability of the droplet growth histories, resulting primarily from entrainment, appears to explain the magnitude of the observed droplet size distribution widths, without representation of other broadening mechanisms. Additional work is needed, however, as the predicted mean droplet diameter is too large relative to the observations and likely results from the model resolution limiting dilution of the simulated cloud.


2021 ◽  
Author(s):  
Veronika Pörtge ◽  
Tobias Kölling ◽  
Tobias Zinner ◽  
Linda Forster ◽  
Claudia Emde ◽  
...  

<p>The evolution of clouds and their impact on weather and climate is closely related to the cloud droplet size distribution, which is often represented by two parameters: the cloud droplet effective radius (reff) and the effective variance (veff). The droplet radius (reff) determines the radiative effect of clouds on climate. The effective variance is a measure of the width of the size distribution which is, for instance, important to understand the formation of precipitation or entrainment and mixing processes. We present an airborne remote-sensing technique to determine reff and veff from high-resolution polarimetric imaging observations of the LMU cloud camera system specMACS.</p><p>Recently the spectral camera system has been upgraded by a wide-field polarization resolving RGB camera which was operated for the first time on the HALO aircraft during the EUREC<sup>4</sup>A campaign. The new polarimeter is ideally suited for observing the cloudbow - an optical phenomenon which forms by scattering of sunlight by liquid water cloud droplets at cloud top. The cloudbow is dominated by single scattering which has two implications: Its visibility is significantly enhanced in polarized measurements and its structure is sensitive to the cloud droplet size distribution at cloud top. This allows the retrieval of reff and veff by fitting the observed polarized cloudbow reflectances against a look-up table of pre-computed scattering phase functions.</p><p>The characteristics of the polarimeter are optimized for the measurement of the cloudbow. The wide field-of-view is key for observing the cloudbow (scattering angle 135° -165°) for a wide range of solar positions. Another advantage is the high spatial and temporal resolution which allows the study of small-scale variability of cloud microphysics at cloud top with a horizontal resolution of up to 20 m. Combining the polarimetric cloudbow technique with an existing stereographic retrieval of cloud geometry allows to derive vertical profiles of the droplet size distribution at cloud top. Observations of different EUREC<sup>4</sup>A cloud fields are used to demonstrate the retrieval technique and to present first spatial distributions and vertical profiles of cloud droplet size distributions.</p>


2009 ◽  
Vol 114 (D11) ◽  
Author(s):  
W. C. Hsieh ◽  
A. Nenes ◽  
R. C. Flagan ◽  
J. H. Seinfeld ◽  
G. Buzorius ◽  
...  

2017 ◽  
Vol 74 (1) ◽  
pp. 249-258 ◽  
Author(s):  
Adele L. Igel ◽  
Susan C. van den Heever

Abstract In this two-part study, the relationships between the width of the cloud droplet size distribution and the microphysical processes and cloud characteristics of nonprecipitating shallow cumulus clouds are investigated using large-eddy simulations. In Part I, simulations are run with a bin microphysics scheme and the relative widths (standard deviation divided by mean diameter) of the simulated cloud droplet size distributions are calculated. They reveal that the value of the relative width is higher and less variable in the subsaturated regions of the cloud than in the supersaturated regions owing to both the evaporation process itself and enhanced mixing and entrainment of environmental air. Unlike in some previous studies, the relative width is not found to depend strongly on the initial aerosol concentration or mean droplet concentration. Nonetheless, local values of the relative width are found to positively correlate with local values of the droplet concentrations, particularly in the supersaturated regions of clouds. In general, the distributions become narrower as the local droplet concentration increases, which is consistent with the difference in relative width between the supersaturated and subsaturated cloud regions and with physically based expectations. Traditional parameterizations for the relative width (or shape parameter, a related quantity) of cloud droplet size distributions in bulk microphysics schemes are based on cloud mean values, but the bin simulation results shown here demonstrate that more appropriate parameterizations should be based on the relationship between the local values of the relative width and the cloud droplet concentration.


Sign in / Sign up

Export Citation Format

Share Document