scholarly journals On a solution of the closure problem for dry convective boundary layer turbulence and beyond

Abstract We consider the closure problem of representing the higher order moments (HOMs) in terms of lower-order moments, a central feature in turbulence modelling based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our focus is on models suited for the description of asymmetric, non-local and semi-organized turbulence in the dry atmospheric convective boundary layer (CBL). We establish a multivariate probability density function (PDF) describing populations of plumes which are embedded in a sea of weaker randomly spaced eddies, and apply an assumed Delta-PDF approximation. The main content of this approach consists of capturing the bulk properties of the PDF. We solve the closure problem analytically for all relevant higher order moments (HOMs) involving velocity components and temperature and establish a hierarchy of new non-Gaussian turbulence closure models of different content and complexity ranging from analytical to semi-analytical. All HOMs in the hierarchy have a universal and simple functional form. They refine the widely used Millionshchikov closure hypothesis and generalize the famous quadratic skewness-kurtosis relationship to higher-order. We examine the performance of the new closures by comparison with measurement, LES and DNS data and derive empirical constants for semi-analytical models, which are best for practical applications. We show that the new models have a good skill in predicting the HOMs for atmospheric CBL. Our closures can be implemented in second-, third- and fourth-order RANS turbulence closure models of bi-, tri-and four-variate levels of complexity. Finally, several possible generalizations of our approach are discussed.

2016 ◽  
Vol 73 (2) ◽  
pp. 667-692 ◽  
Author(s):  
Volker Wulfmeyer ◽  
Shravan Kumar Muppa ◽  
Andreas Behrendt ◽  
Eva Hammann ◽  
Florian Späth ◽  
...  

Abstract Atmospheric variables in the convective boundary layer (CBL), which are critical for turbulence parameterizations in weather and climate models, are assessed. These include entrainment fluxes, higher-order moments of humidity, potential temperature, and vertical wind, as well as dissipation rates. Theoretical relationships between the integral scales, gradients, and higher-order moments of atmospheric variables, fluxes, and dissipation rates are developed mainly focusing on the entrainment layer (EL) at the top of the CBL. These equations form the starting point for tests of and new approaches in CBL turbulence parameterizations. For the investigation of these relationships, an observational approach using a synergy of ground-based water vapor, temperature, and wind lidar systems is proposed. These systems measure instantaneous vertical profiles with high temporal and spatial resolution throughout the CBL including the EL. The resolution of these systems permits the simultaneous measurement of gradients and fluctuations of these atmospheric variables. For accurate analyses of the gradients and the shapes of turbulence profiles, the lidar system performances are very important. It is shown that each lidar profile can be characterized very well with respect to bias and system noise and that the constant bias has negligible effect on the measurement of turbulent fluctuations. It is demonstrated how different gradient relationships can be measured and tested with the proposed lidar synergy within operational measurements or new field campaigns. Particularly, a novel approach is introduced for measuring the rate of destruction of humidity and temperature variances, which is an important component of the variance budget equations.


Sign in / Sign up

Export Citation Format

Share Document