scholarly journals Modulation of the Tibetan Plateau Snow Cover on the ENSO Teleconnections: From the East Asian Summer Monsoon Perspective

2012 ◽  
Vol 25 (7) ◽  
pp. 2481-2489 ◽  
Author(s):  
Zhiwei Wu ◽  
Jianping Li ◽  
Zhihong Jiang ◽  
Tingting Ma

Abstract The East Asian summer monsoon (EASM) may exhibit rather large variability between years characterized by the same ENSO phase. Such inconsistency reduces the EASM predictability based on ENSO. Results in this study show that the Tibetan Plateau snow cover (TPSC) exerts a modulating effect on ENSO teleconnections and ENSO significantly correlates with the EASM only during the reduced TPSC summers. Three-dimensional circulation structures are examined to manifest that the typical ENSO signals in reduced TPSC summers tend to be stronger than in excessive TPSC summers. Numerical and theoretical evidences indicate that the anomalously reduced TPSC can force positive geopotential height anomalies at the upper troposphere and weaken the jet streams across eastern Asia and northwestern Pacific. Governed by such basic state zonal flows, the extratropical Rossby wave response to the ENSO forcing usually has a larger amplitude and pronounced westward development. In such case, ENSO extends its influences to eastern Asia and enhances its connection with the EASM.

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhibiao Wang ◽  
Renguang Wu ◽  
Zhang Chen ◽  
Lihua Zhu ◽  
Kai Yang ◽  
...  

In recent years, some studies emphasized the influence of western Tibetan Plateau summer snow on the East Asian summer precipitation. With the temperature rise in the past decades, the snow cover over the western Tibetan Plateau in summer has significantly decreased. This raises the question whether the impact of the Tibetan Plateau snow has changed. The present study identifies a prominent change in the influence of the western Tibetan Plateau snow cover on the East Asian summer precipitation. Before the early 2000’s, positive precipitation anomalies extend from the southeastern Tibetan Plateau through the Yangtze River to Japan and Korea and negative anomalies cover southeast China corresponding to more Tibetan Plateau snow cover. After the early 2000’s, with the reduction of snow cover variability, below-normal and above-normal summer precipitation occurs over northern China-Mongolia and northeast Asia, respectively, corresponding to more Tibetan Plateau snow cover. The change in the influence of the Tibetan Plateau snow on the East Asian summer precipitation is associated with an obvious change in the atmospheric circulation anomaly pattern. Before the early 2000’s, the wind anomalies display a south-north contrast pattern with anomalous convergence along the Yangtze River. After the early 2000’s, an anomalous cyclone occupies Northeast China with anomalous southerlies and northerlies over northeast Asia and northern China, respectively. The Tibetan Plateau snow cover variation after the early 2000’s is associated with the northeast Indian summer precipitation. The model experiments confirm that the weakened influence of summer western Tibetan Plateau snow cover on the East Asian atmospheric circulation and precipitation with the reduced snow cover anomalies.


2021 ◽  
Author(s):  
Jun-Hyeok Son ◽  
Kyong-Hwan Seo

Abstract From spring to summer, the East Asian summer monsoon (EASM) rainband migrates northwestward. During summer, East Asian countries experience extensive precipitation due to the EASM rainband, but the springtime monsoon rainband lies over the Pacific. The seasonal evolution of the EASM rainband is influenced by the mechanical effect of the Tibetan Plateau, and seasonal changes in the westerly wind speeds impinging on the Tibetan Plateau are a key driver of this process. In this study, using interannual variability of the upstream zonal wind speed, the dynamical mechanism for the interannual variations of the EASM precipitation is revealed based on the topographically forced stationary Rossby wave theory. The dynamical mechanism regulating interannual variability in the EASM rainband is essentially the same mechanism that drives the seasonal evolution of the climatological EASM rainband. If the westerly winds impinging on the Tibetan Plateau are stronger (weaker) than average, then the EASM rainband shifts eastward (westward). Large variations in the upstream westerly wind during May induced considerable interannual variation in the zonal location of the rainband (up to a 20–30º shift). The westerly wind speed exhibited less variations in June and July, resulting in a smaller zonal shift of approximately 10º.


2021 ◽  
pp. 1-36
Author(s):  
Soo-Hyun Seok ◽  
Kyong-Hwan Seo

AbstractRecent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east–west direction, the TP is likely to force the stationary waves that induce precipitation over the mid-latitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.


2016 ◽  
Vol 29 (23) ◽  
pp. 8495-8514 ◽  
Author(s):  
Zhixiang Xiao ◽  
Anmin Duan

Abstract The relationship between Tibetan Plateau (TP) snow cover and the East Asian summer monsoon (EASM) has long been discussed, but the underlying mechanism remains controversial. In this paper, the snow–albedo and snow–hydrology feedbacks over the TP are investigated based on multiple sources of snow data for the period 1979–2011. The results indicate that winter snow cover plays an important role in cooling local air temperature through the snow–albedo effect; the TP surface net solar radiation in years with above-normal snow cover is approximately 18 W m−2 less than that in below-normal snow cover years. However, data analysis demonstrates that persistent effects of winter snow cover are limited to the period from winter to spring over most parts of the central and eastern TP. Therefore, the preceding snow cover over the central and eastern TP exerts little influence over either the in situ summer atmospheric heat source or the EASM, because of its limited persistence. In contrast, the effects of winter or spring snow cover anomalies over the western TP and the Himalayas can last until summer, and these anomalies further influence the EASM by modulating moisture transport to eastern China and favoring eastward-propagating synoptic disturbances that are generated over the TP. Generally, above-normal snow cover over the western TP and the Himalayas facilitates abundant summer precipitation between the Yangtze and Yellow River basins, which is confirmed by results from a regional Weather Research and Forecasting model simulation.


2014 ◽  
Vol 27 (8) ◽  
pp. 3052-3072 ◽  
Author(s):  
Jinqiang Chen ◽  
Simona Bordoni

Abstract This paper investigates the dynamical processes through which the Tibetan Plateau (TP) influences the East Asian summer monsoon (EASM) within the framework of the moist static energy (MSE) budget, using both observations and atmospheric general circulation model (AGCM) simulations. The focus is on the most prominent feature of the EASM, the so-called meiyu–baiu (MB), which is characterized by a well-defined, southwest–northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean between mid-June and mid-July. Observational analyses of the MSE budget of the MB front indicate that horizontal advection of moist enthalpy, and primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the TP is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region.


2020 ◽  
Vol 33 (18) ◽  
pp. 7945-7965 ◽  
Author(s):  
J. C. H. Chiang ◽  
W. Kong ◽  
C. H. Wu ◽  
D. S. Battisti

AbstractThe East Asian summer monsoon is unique among summer monsoon systems in its complex seasonality, exhibiting distinct intraseasonal stages. Previous studies have alluded to the downstream influence of the westerlies flowing around the Tibetan Plateau as key to its existence. We explore this hypothesis using an atmospheric general circulation model that simulates the intraseasonal stages with fidelity. Without a Tibetan Plateau, East Asia exhibits only one primary convective stage typical of other monsoons. As the plateau is introduced, the distinct rainfall stages—spring, pre-mei-yu, mei-yu, and midsummer—emerge, and rainfall becomes more intense overall. This emergence coincides with a pronounced modulation of the westerlies around the plateau and extratropical northerlies penetrating northeastern China. The northerlies meridionally constrain the moist southerly flow originating from the tropics, leading to a band of lower-tropospheric convergence and humidity front that produces the rainband. The northward migration of the westerlies away from the northern edge of the plateau leads to a weakening of the extratropical northerlies, which, coupled with stronger monsoonal southerlies, leads to the northward migration of the rainband. When the peak westerlies migrate north of the plateau during the midsummer stage, the extratropical northerlies disappear, leaving only the monsoon low-level circulation that penetrates northeastern China; the rainband disappears, leaving isolated convective rainfall over northeastern China. In short, East Asian rainfall seasonality results from the interaction of two seasonally evolving circulations—the monsoonal southerlies that strengthen and extend northward, and the midlatitude northerlies that weaken and eventually disappear—as summer progresses.


2014 ◽  
Vol 14 (13) ◽  
pp. 6867-6879 ◽  
Author(s):  
Y. Yang ◽  
H. Liao ◽  
J. Li

Abstract. We apply a global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) driven by the NASA/GEOS-4 assimilated meteorological fields to quantify the impacts of the East Asian summer monsoon (EASM) on interannual variations of June-July-August (JJA) surface-layer O3 concentrations over China. With anthropogenic emissions fixed at year 2005 levels, the model simulation for years 1986–2006 shows that the changes in meteorological parameters alone lead to interannual variations in JJA surface-layer O3 concentrations by 2–5% over central eastern China, 1–3% in northwestern China, and 5–10% over the Tibetan Plateau as well as the border and coastal areas of southern China, as the interannual variations are relative to the average O3 concentrations over the 21 yr period. Over the years 1986–2006, the O3 concentration averaged over all of China is found to correlate positively with the EASM index with a large correlation coefficient of +0.75, indicating that JJA O3 concentrations are lower (or higher) in weaker (or stronger) EASM years. Relative to JJA surface-layer O3 concentrations in the strongest EASM years (1990, 1994, 1997, 2002, and 2006), O3 levels in the weakest EASM years (1988, 1989, 1996, 1998, and 2003) are lower over almost all of China with a national mean lower O3 concentration by 2.0 ppbv (parts per billion by volume; or 4%). Regionally, the largest percentage differences in O3 concentration between the weakest and strongest EASM years are found to exceed 6% in northeastern China, southwestern China, and over the Tibetan Plateau. Sensitivity studies show that the difference in transboundary transport of O3 is the most dominant factor that leads to lower-O3 concentrations in the weakest EASM years than in the strongest EASM years, which, together with the enhanced vertical convections in the weakest EASM years, explain about 80% of the differences in surface-layer O3 concentrations between the weakest and strongest EASM years. We also find that the impacts the EASM strength on JJA surface-layer O3 can be particularly strong (comparable in magnitude to the impacts on O3 by changes in anthropogenic emissions over years 1986–2006) for certain years. The largest increases in O3 by anthropogenic emissions are simulated over southeastern China, whereas the largest impacts of the EASM on O3 are found over central and western China.


Sign in / Sign up

Export Citation Format

Share Document