scholarly journals Projected Significant Increase in the Number of Extreme Extratropical Cyclones in the Southern Hemisphere

2017 ◽  
Vol 30 (13) ◽  
pp. 4915-4935 ◽  
Author(s):  
Edmund K. M. Chang

Extratropical cyclones are responsible for much of the extreme weather in the midlatitudes; thus, how these cyclones may change under increasing greenhouse gas forcing is of much general interest. Previous studies have suggested a poleward shift in the location of these cyclones, but how the intensity may change remains uncertain, especially in terms of maximum wind speed. In this study, projected changes in extreme cyclones in the Southern Hemisphere, based on 26 models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are presented. Multiple definitions of extreme cyclones have been examined, including intensity exceeding constant thresholds of sea level pressure perturbations, 850-hPa vorticity, and 850-hPa winds, as well as variable thresholds corresponding to a top-5 or top-1 cyclone per winter month in these three parameters and the near-surface winds. Results presented show that CMIP5 models project a significant increase in the frequency of extreme cyclones in all four seasons regardless of the definition, with over 88% of the models projecting an increase. Spatial patterns of increase are also consistent, with the largest increase projected between 45° and 60°S, extending from the South Atlantic across the south Indian Ocean into the Pacific. The projected increases in cyclone statistics are consistent with those in Eulerian statistics, such as sea level pressure (SLP) variance. However, while the projected increase in SLP variance can be linked to increase in the mean available potential energy (MAPE), the increases in cyclone statistics are not well correlated with those in MAPE.

2020 ◽  
Author(s):  
Clemens Spensberger ◽  
Thomas Spengler

<p>Jets in the upper troposphere constitute a cornerstone of both synoptic meteorology and climate dynamics, thus providing a direct link between weather and mid-latitude climate variability. Conventionally, jet variability is mostly inferred indirectly through the variability of geopotential or sea-level pressure. Here we use a feature-based jet detection and present a global climatology of upper tropospheric jets as well as their variability for ocean sectors in both Hemispheres. The jet streams on both hemispheres are found to spiral poleward, featuring a continuous transition from subtropical to eddy-driven jets. Most intrinsic patterns of jet variability represent a changeover from a meridional shifting type variability to a pulsing-type variability, or vice-versa, across each ocean basin.</p><p>For the Southern Hemisphere, we find considerable discrepancies between geopotential and jet-based variability. Specifically, we show that SAM cannot be interpreted in terms of mid-latitude variability, as SAM merely modulates the most poleward part of the cyclone tracks and only marginally influences the distribution of other weather-related features of the storm track (e.g., position of jet axes and Rossby wave breaking). Instead, SAM emerges as the leading pattern of geopotential variability due to strong correlations of sea-level pressure around the Antarctic continent. Considering sector-specific variability pattern, we identify modes of consistent geopotential and jet variability in the South Pacific, and, to a lesser extent, the South Indian Ocean. In the South Pacific the leading mode of variability points towards NAO-like variability.</p>


2018 ◽  
Vol 57 (3) ◽  
pp. 535-553 ◽  
Author(s):  
Joshua M. Gilliland ◽  
Barry D. Keim

AbstractThis study examines the surface wind characteristics of Brazil on the basis of the location of the maximum high pressure center in the South Atlantic basin (SAB), known as the South Atlantic anticyclone (SAA), from three reanalysis datasets for the period of 1980–2014. Linear wind speed trends determined for Brazil are geographically related to surface and macroscale atmospheric conditions found in the SAB. The daily mean position of the SAA exhibited a latitudinal poleward shift for all seasons, and a longitudinal trend was dependent upon extratropical activity found in the SAB. Results also show that wind speed and sea level pressure for northern Brazil are dependent upon the latitudinal position of the SAA. Consequently, surface wind correlations for southern Brazil tend to be related to changes in the longitudinal position of the SAA, which result from transient anticyclones migrating over the SAB. An examination of positive and negative wind anomalies shows that shifts in the position of the SAA are coupled with changes in sea level pressure for northern Brazil and air temperature for southern Brazil. From these findings, a surface wind analysis was performed to demonstrate how the geographical location of the SAA affects wind speed anomalies across Brazil and the SAB. Results from this study can assist in understanding how atmospheric systems change within the SAB so that forthcoming socioeconomic and climate-related causes of wind for the country of Brazil can be known.


Sign in / Sign up

Export Citation Format

Share Document