scholarly journals Impact of Anthropogenic Climate Change on the East Asian Summer Monsoon

2017 ◽  
Vol 30 (14) ◽  
pp. 5205-5220 ◽  
Author(s):  
Claire Burke ◽  
Peter Stott

The East Asian summer monsoon (EASM) is important for bringing rainfall to large areas of China. Historically, variations in the EASM have had major impacts including flooding and drought. The authors present an analysis of the impact of anthropogenic climate change on EASM rainfall in eastern China using a newly updated attribution system. The results suggest that anthropogenic climate change has led to an overall decrease in total monsoon rainfall over the past 65 years and an increased number of dry days. However, the model also predicts that anthropogenic forcings have caused the most extreme heavy rainfall events to become shorter in duration and more intense. With the potential for future changes in aerosol and greenhouse gas emissions, historical trends in monsoon rainfall may not be indicative of future changes, although extreme rainfall is projected to increase over East Asia with continued warming in the region.

2015 ◽  
Vol 28 (7) ◽  
pp. 2623-2634 ◽  
Author(s):  
Wei Wei ◽  
Renhe Zhang ◽  
Min Wen ◽  
Baek-Jo Kim ◽  
Jae-Cheol Nam

Abstract A diagnostic analysis reveals that on the interannual time scale the southeast–northwest movement is a dominant feature of the South Asian high (SAH), and it is closely related to the Indian and East Asian summer monsoon rainfall. The southeastward (northwestward) shift of the SAH is closely related to less (more) Indian summer monsoon rainfall and more (less) rainfall in the Yangtze River valley (YRV) over the East Asian summer monsoon region. An anomalous AGCM is utilized to examine the effect of latent heat anomalies associated with the Asian summer monsoon rainfall on the SAH. The negative latent heat anomalies over the northern Indian Subcontinent associated with a weak Indian summer monsoon stimulates an anomalous cyclone to its northwest and an anticyclone to its northeast over the eastern Tibetan Plateau and eastern China in the upper troposphere, which is responsible for the east–west shift of the SAH and more rainfall in the YRV. The positive latent heat release associated with rainfall anomalies in the YRV excites a southward-located anticyclone over eastern China, exerting a feedback effect on the SAH and leading to a southeast–northwest shift of the SAH.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Yongxiao Liang ◽  
Pengfeng Xiao

The effects of urbanization over eastern China on the East Asian summer monsoon (EASM) under different sea surface temperature background are compared using a Community Atmosphere Model (CAM5.1). Experiments of urbanization investigated by comparing two climate simulations with and without urban land cover under both positive and negative phases of Pacific Decadal Oscillation (PDO) show the spatial distribution of precipitation with ‘southern flood and northern drought’ and weakening status of EASM. The climate effect of urbanization in eastern China is significantly different from north to south. Anomalous vertical ascending motion due to the role of urbanization in the south of 30° N have induced an increase in convective available potential energy (CAPE) and precipitation increase over southern China. At the same time, the downward vertical motion occurs in the north of 30° N which cause warming over northern China. Due to the anti-cyclonic anomalies in the upper and lower layers of the north, the monsoon circulation is weakened which can reduce the precipitation. However, urbanization impact under various phases of PDO show different effect. In the 1956–1970 urbanization experiments of negative PDO phase, the downward vertical motion and anti-cyclonic anomalies in the north of 30° N are also weaker than that of positive phase of PDO in 1982–1996. In terms of this situation, the urbanization experiments of negative phase of PDO reveal that the range of the warming area over the north of 40° N is small, and the warming intensity is weak, but the precipitation change is more obvious compared with the background of positive phase of PDO.


2018 ◽  
Vol 115 (9) ◽  
pp. 2016-2021 ◽  
Author(s):  
Jesse A. Day ◽  
Inez Fung ◽  
Weihan Liu

The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.


2010 ◽  
Vol 23 (13) ◽  
pp. 3657-3675 ◽  
Author(s):  
Haoming Chen ◽  
Tianjun Zhou ◽  
Richard B. Neale ◽  
Xiaoqing Wu ◽  
Guang Jun Zhang

Abstract The performance of an interim version of the NCAR Community Atmospheric Model (CAM3.5) in simulating the East Asian summer monsoon (EASM) is assessed by comparing model results against observations and reanalyses. Both the climate mean states and seasonal cycle of major EASM components are evaluated. Special attention is paid to the sensitivity of model performance to changes in the convection scheme. This is done by analyzing four CAM3.5 runs with identical dynamical core and physical packages but different modifications to their convection scheme, that is, the original Zhang–McFarlane (ZM) scheme, Neale et al.’s modification (NZM), Wu et al.’s modification (WZM), and Zhang’s modification (ZZM). The results show that CAM3.5 can capture the major climate mean states and seasonal features of the EASM circulation system, including reasonable simulations of the Tibetan high in the upper troposphere and the western Pacific subtropical high (WPSH) in the middle and lower troposphere. The main deficiencies are found in monsoon rainfall and the meridional monsoon cell. The weak meridional land–sea thermal contrasts in the model contribute to the weaker monsoon circulation and to insufficient rainfall in both tropical and subtropical regions of EASM. The seasonal migration of rainfall, as well as the northward jump of the WPSH from late spring to summer, is reasonably simulated, except that the northward jump of the monsoon rain belt still needs improvement. Three runs using modified schemes generally improve the model performance in EASM simulation compared to the control run. The monsoon rainfall distribution and its seasonal variation are sensitive to modifications of the ZM convection scheme, which is most likely due to differences in closure assumptions. NZM, which uses a convective available potential energy (CAPE)-based closure assumption, performs better in tropical regions where the rainfall is closely related to CAPE. However, WZM and ZZM, which use quasi-equilibrium (QE) closure, have more realistic subtropical rainfall in the mei-yu/baiu/changma front region, mainly because the rainfall in the subtropics is more sensitive to the rate of destabilization by the large-scale flow.


Sign in / Sign up

Export Citation Format

Share Document