Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases

2014 ◽  
Vol 31 (2) ◽  
pp. 344-354 ◽  
Author(s):  
Juan Feng ◽  
Wen Chen
2021 ◽  
Vol 9 ◽  
Author(s):  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Zhangxi Hu ◽  
Ying Zhong Tang ◽  
Guangquan Chen ◽  
...  

The mud areas of East Asian marginal seas record considerable information about regional environmental evolution. However, debate continues regarding the relative importance of the major factors in regional sedimentary dynamics, i.e., the East Asian summer monsoon, East Asian winter monsoon, and oceanic circulation. In this study, we investigated the characteristics of grain size from a gravity core obtained in the South Yellow Sea to reveal changes in sedimentary dynamics since 6,000 years BP, and to elucidate the relationship between the East Asian summer monsoon and the East Asian winter monsoon. We found that the mean grain size was in the range of 6.9–7.8 Φ, the sediment was poorly sorted within a small range (1.2, 1.5), and the M values from 4.7 to 6.7 μm and most of the C values from 24 to 65 μm suggested pelagic suspension transport. Results indicated that the intensity of both the East Asian summer monsoon and the East Asian winter monsoon showed a fluctuating trend of decrease after approximately 6,000 years BP, and that the relationship between them was generally anticorrelated. Based on these results, we suggest that positive correlation between the East Asian summer monsoon and the East Asian winter monsoon usually results in the fall or establishment of ancient dynasties in the Central Plains of China and that negative correlation between them is controlled by strong solar radiation. Weakening of solar radiation diminishes its control of the intensity of (and thus the correlation between) the East Asian summer monsoon and the East Asian winter monsoon, at which time the North Atlantic Oscillation plays a modulating role.


2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Tiantian Yu ◽  
Wen Chen ◽  
Juan Feng ◽  
Kaiming Hu ◽  
Lei Song ◽  
...  

2017 ◽  
Vol 30 (14) ◽  
pp. 5205-5220 ◽  
Author(s):  
Claire Burke ◽  
Peter Stott

The East Asian summer monsoon (EASM) is important for bringing rainfall to large areas of China. Historically, variations in the EASM have had major impacts including flooding and drought. The authors present an analysis of the impact of anthropogenic climate change on EASM rainfall in eastern China using a newly updated attribution system. The results suggest that anthropogenic climate change has led to an overall decrease in total monsoon rainfall over the past 65 years and an increased number of dry days. However, the model also predicts that anthropogenic forcings have caused the most extreme heavy rainfall events to become shorter in duration and more intense. With the potential for future changes in aerosol and greenhouse gas emissions, historical trends in monsoon rainfall may not be indicative of future changes, although extreme rainfall is projected to increase over East Asia with continued warming in the region.


Author(s):  
Taehyung Kim ◽  
Soheon Lee ◽  
Hye‐Jin Park ◽  
Dong‐Hyun Cha ◽  
Kyong‐Hwan Seo

2013 ◽  
Vol 26 (2) ◽  
pp. 622-635 ◽  
Author(s):  
Wen Chen ◽  
Juan Feng ◽  
Renguang Wu

Abstract The present study investigates the roles of El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) in the relationship between the East Asian winter monsoon (EAWM) and the following East Asian summer monsoon (EASM). The variability of the EAWM is divided into an ENSO-related part named EAWMEN and an ENSO-unrelated part named EAWMres. Corresponding to a weak EAWMEN, an anomalous low-level anticyclone forms over the western North Pacific (WNP) and persists from winter to the following summer. This anticyclone enhances southerlies over the coast of East Asia in summer. Hence, a weak EAWMEN tends to be followed by a strong EASM and vice versa. As such, a link is established between the EAWMEN and the EASM. The persistence of this WNP anticyclone may be mainly attributed to the sea surface temperature anomalies associated with the ENSO-related EAWM part in the tropical Indian Ocean and the extratropical North Pacific. In contrast, corresponding to a weak EAWMres, the anomalous WNP anticyclone is only seen in winter, and there is no obvious relationship between the EAWMres and the following EASM. Therefore, the observed EAWM–EASM relationship is dominated by the winter monsoon variability associated with ENSO. It is found that the EAWMEN–EASM relationship is modulated by the PDO. There tends to be a much stronger EASM after a weak EAWMEN during the positive PDO phases than during the negative PDO phases.


2011 ◽  
Vol 7 (4) ◽  
pp. 1363-1370 ◽  
Author(s):  
Z. G. Shi ◽  
X. D. Liu ◽  
Y. B. Sun ◽  
Z. S. An ◽  
Z. Liu ◽  
...  

Abstract. Influences of the Earth's astronomical forcing on the evolution of East Asian monsoon have been demonstrated with various geological records and climate models. Here, we present time series of climatic proxies from the Chinese Loess Plateau and Sanbao/Hulu caves and the winter/summer monsoon intensity index from a long-term transient climate model simulation. Both the observations and modelling results reveal consistently distinct responses of East Asian summer and winter monsoons to astronomical forcing. Different from the dominant local impact on the summer monsoon at the precession scale (~20 ka period), the East Asian winter monsoon is driven predominantly by the obliquity forcing (~40 ka period). We propose that the obliquity forcing controls the meridional insolation difference and, therefore, exerts a more significant effect on the evolution of the East Asian winter monsoon than previously expected.


2011 ◽  
Vol 7 (2) ◽  
pp. 943-964 ◽  
Author(s):  
Z. Shi ◽  
X. Liu ◽  
Y. Sun ◽  
Z. An ◽  
Z. Liu ◽  
...  

Abstract. Influences of the Earth's orbital forcing on the evolution of East Asian monsoon have been demonstrated with various geological records and climate models. Here, we present time series of climatic proxies from the Chinese Loess Plateau and Sanbao/Hulu caves and the winter/summer monsoon intensity index from a long-term transient climate model simulation. Both the observations and modeling results reveal consistently distinct responses of East Asian summer and winter monsoons to orbital forcing. Different from the dominant local impact on the summer monsoon at the precession scale (~20 ka period), the East Asian winter monsoon is driven predominantly by the obliquity forcing (~40 ka period). We propose that the obliquity forcing controls the meridional insolation difference and therefore exerts a more significant effect on the evolution of the East Asian winter monsoon than expected before.


2001 ◽  
Vol 55 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Zhimin Jian ◽  
Baoqi Huang ◽  
Wolfgang Kuhnt ◽  
Hui-Ling Lin

AbstractForaminifera from two cores off eastern Vietnam and the northwestern Philippines, where modern summer and winter monsoon-driven upwelling occurs in the South China Sea, respectively, were analyzed to evaluate the changes in paleoproductivity and upper water structure over the last 220,000 yr. We observed enhanced organic carbon flux and a shoaled thermocline when upwelling intensified off eastern Vietnam during interglacial ages and off the northwestern Philippines during glacial ages. This indicates that the East Asian summer monsoon increased while the winter monsoon decreased during interglacial ages. Particularly, the upwelling reached a maximum off eastern Vietnam during late marine isotopic stage (MIS) 5 and off the northwestern Philippines during MIS 2, implying that the summer monsoon decreased gradually since MIS 5 while the winter monsoon displayed an opposite trend. The variations in upwelling proxies exhibit a distinct cyclicity with frequencies near 41,000 yr and 23,000 yr off eastern Vietnam, in contrast to a strong frequency peak near 100,000 yr off the northwestern Philippines. We suggest that the East Asian summer monsoon has been forced by changes in solar insolation associated with precession and obliquity, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.


Sign in / Sign up

Export Citation Format

Share Document