Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

2013 ◽  
Vol 141 (6) ◽  
pp. 2107-2119 ◽  
Author(s):  
J. McLean Sloughter ◽  
Tilmann Gneiting ◽  
Adrian E. Raftery

Abstract Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to wind vector forecasting must be based on bivariate distributions. The prevailing paradigm in weather forecasting is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty can then be assessed through ensemble forecasts, where multiple estimates of the current state of the atmosphere are used to generate a collection of deterministic predictions. Ensemble forecasts are often uncalibrated, however, and Bayesian model averaging (BMA) is a statistical way of postprocessing these forecast ensembles to create calibrated predictive probability density functions (PDFs). It represents the predictive PDF as a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights reflect the forecasts’ relative contributions to predictive skill over a training period. In this paper the authors extend the BMA methodology to use bivariate distributions, enabling them to provide probabilistic forecasts of wind vectors. The BMA method is applied to 48-h-ahead forecasts of wind vectors over the North American Pacific Northwest in 2003 using the University of Washington mesoscale ensemble and is shown to provide better-calibrated probabilistic forecasts than the raw ensemble, which are also sharper than probabilistic forecasts derived from climatology.

2008 ◽  
Vol 136 (12) ◽  
pp. 4641-4652 ◽  
Author(s):  
Craig H. Bishop ◽  
Kevin T. Shanley

Abstract Methods of ensemble postprocessing in which continuous probability density functions are constructed from ensemble forecasts by centering functions around each of the ensemble members have come to be called Bayesian model averaging (BMA) or “dressing” methods. Here idealized ensemble forecasting experiments are used to show that these methods are liable to produce systematically unreliable probability forecasts of climatologically extreme weather. It is argued that the failure of these methods is linked to an assumption that the distribution of truth given the forecast can be sampled by adding stochastic perturbations to state estimates, even when these state estimates have a realistic climate. It is shown that this assumption is incorrect, and it is argued that such dressing techniques better describe the likelihood distribution of historical ensemble-mean forecasts given the truth for certain values of the truth. This paradigm shift leads to an approach that incorporates prior climatological information into BMA ensemble postprocessing through Bayes’s theorem. This new approach is shown to cure BMA’s ill treatment of extreme weather by providing a posterior BMA distribution whose probabilistic forecasts are reliable for both extreme and nonextreme weather forecasts.


2020 ◽  
Vol 27 (1) ◽  
pp. 35-49
Author(s):  
Nina Schuhen

Abstract. With numerical weather prediction ensembles unable to produce sufficiently calibrated forecasts, statistical post-processing is needed to correct deterministic and probabilistic biases. Over the past decades, a number of methods addressing this issue have been proposed, with ensemble model output statistics (EMOS) and Bayesian model averaging (BMA) among the most popular. They are able to produce skillful deterministic and probabilistic forecasts for a wide range of applications. These methods are usually applied to the newest model run as soon as it has finished, before the entire forecast trajectory is issued. RAFT (rapid adjustment of forecast trajectories), a recently proposed novel approach, aims to improve these forecasts even further, utilizing the error correlation patterns between lead times. As soon as the first forecasts are verified, we start updating the remainder of the trajectory based on the newly gathered error information. As RAFT works particularly well in conjunction with other post-processing methods like EMOS and techniques designed to reconstruct the multivariate dependency structure like ensemble copula coupling (ECC), we look to identify the optimal combination of these methods. In our study, we apply multi-stage post-processing to wind speed forecasts from the UK Met Office's convective-scale MOGREPS-UK ensemble and analyze results for short-range forecasts at a number of sites in the UK and the Republic of Ireland.


2019 ◽  
Author(s):  
Nina Schuhen

Abstract. With numerical weather prediction ensembles unable to produce sufficiently calibrated forecasts, statistical post-processing is needed to correct deterministic and probabilistic biases. Over the past decades, a number of methods addressing this issue have been proposed, with ensemble model output statistics (EMOS) and Bayesian model averaging (BMA) among the most popular. They are able to produce skillful deterministic and probabilistic forecasts for a wide range of applications. These methods are usually applied to the newest model run as soon as it finished, before the entire forecast trajectory is issued. RAFT (rapid adjustment of forecast trajectories), a recently proposed novel approach, aims to improve these forecasts even further, utilizing the error correlation patterns between lead times. As soon as the first forecasts are verified, we start updating the remainder of the trajectory based on the newly gathered error information. As RAFT works particularly well in conjunction with other post-processing methods like EMOS and techniques designed to reconstruct the multivariate dependency structure like ensemble copula coupling (ECC), we look to identify the optimal combination of these methods. In our study, we apply multi-stage post-processing to wind speed forecasts from the UK Met Office's convective-scale MOGREPS-UK ensemble and analyze results for short-range forecasts at a number of sites in the UK and the Republic of Ireland.


2010 ◽  
Vol 138 (5) ◽  
pp. 1811-1821 ◽  
Author(s):  
Le Bao ◽  
Tilmann Gneiting ◽  
Eric P. Grimit ◽  
Peter Guttorp ◽  
Adrian E. Raftery

Abstract Wind direction is an angular variable, as opposed to weather quantities such as temperature, quantitative precipitation, or wind speed, which are linear variables. Consequently, traditional model output statistics and ensemble postprocessing methods become ineffective, or do not apply at all. This paper proposes an effective bias correction technique for wind direction forecasts from numerical weather prediction models, which is based on a state-of-the-art circular–circular regression approach. To calibrate forecast ensembles, a Bayesian model averaging scheme for directional variables is introduced, where the component distributions are von Mises densities centered at the individually bias-corrected ensemble member forecasts. These techniques are applied to 48-h forecasts of surface wind direction over the Pacific Northwest, using the University of Washington mesoscale ensemble, where they yield consistent improvements in forecast performance.


2017 ◽  
Vol 32 (6) ◽  
pp. 2217-2227 ◽  
Author(s):  
Siri Sofie Eide ◽  
John Bjørnar Bremnes ◽  
Ingelin Steinsland

Abstract In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in addition to the one subject to forecasting is common for statistical calibration of deterministic forecasts. However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for the mean model. The spline model allows both wind speed and wind direction to be included nonlinearly. The proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for lead times from +12 to +108 h. An improvement in the continuous ranked probability score is seen for approximately 85% of the locations using the proposed method compared to standard BMA based on only wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology can be extended to include more NWP variables in the calibration and can also be applied to other variables.


2011 ◽  
Vol 29 (7) ◽  
pp. 1295-1303 ◽  
Author(s):  
I. Soltanzadeh ◽  
M. Azadi ◽  
G. A. Vakili

Abstract. Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.


2008 ◽  
Vol 47 (12) ◽  
pp. 3072-3088 ◽  
Author(s):  
Stevie Roquelaure ◽  
Thierry Bergot

Abstract At main international airports, air traffic safety and economic issues related to poor visibility conditions are crucial. Meteorologists face the challenge of supplying airport authorities with accurate forecasts of fog and cloud ceiling. These events are difficult to forecast because conditions evolve on short space and time scales during their life cycle. To obtain accurate forecasts of fog and low clouds, the Code de Brouillard à l’Echelle Locale (the local scale fog code)–Interactions between Soil, Biosphere, and Atmosphere (COBEL–ISBA) local numerical forecast system was implemented at Charles de Gaulle International Airport in Paris. However, even with dedicated observations and initialization, uncertainties remain in both initial conditions and mesoscale forcings. A local ensemble prediction system (LEPS) has been designed around the COBEL–ISBA numerical model and tested to assess the predictability of low visibility procedures events, defined as a visibility less than 600 m and/or a ceiling below 60 m. This work describes and evaluates a local ensemble strategy for the prediction of low visibility procedures. A Bayesian model averaging method has been applied to calibrate the ensemble. The study shows that the use of LEPS for specific local event prediction is well adapted and useful for low visibility prediction in the aeronautic context. Moreover, a wide range of users, especially those with low cost–loss ratios, can expect economic savings with the use of this probabilistic system.


Sign in / Sign up

Export Citation Format

Share Document