scholarly journals Influence of the Size of Supertyphoon Megi (2010) on SST Cooling

2018 ◽  
Vol 146 (3) ◽  
pp. 661-677 ◽  
Author(s):  
Iam-Fei Pun ◽  
I.-I. Lin ◽  
Chun-Chi Lien ◽  
Chun-Chieh Wu

Supertyphoon Megi (2010) left behind two very contrasting SST cold-wake cooling patterns between the Philippine Sea (1.5°C) and the South China Sea (7°C). Based on various radii of radial winds, the authors found that the size of Megi doubles over the South China Sea when it curves northward. On average, the radius of maximum wind (RMW) increased from 18.8 km over the Philippine Sea to 43.1 km over the South China Sea; the radius of 64-kt (33 m s−1) typhoon-force wind (R64) increased from 52.6 to 119.7 km; the radius of 50-kt (25.7 m s−1) damaging-force wind (R50) increased from 91.8 to 210 km; and the radius of 34-kt (17.5 m s−1) gale-force wind (R34) increased from 162.3 to 358.5 km. To investigate the typhoon size effect, the authors conduct a series of numerical experiments on Megi-induced SST cooling by keeping other factors unchanged, that is, typhoon translation speed and ocean subsurface thermal structure. The results show that if it were not for Megi’s size increase over the South China Sea, the during-Megi SST cooling magnitude would have been 52% less (reduced from 4° to 1.9°C), the right bias in cooling would have been 60% (or 30 km) less, and the width of the cooling would have been 61% (or 52 km) less, suggesting that typhoon size is as important as other well-known factors on SST cooling. Aside from the size effect, the authors also conduct a straight-track experiment and find that the curvature of Megi contributes up to 30% (or 1.2°C) of cooling over the South China Sea.

2013 ◽  
Vol 43 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Jiayi Pan ◽  
Yujuan Sun

Abstract The ocean responses to Typhoon Cimaron, which influenced the South China Sea (SCS) from 1 to 8 November 2006, are analyzed. Based on satellite-observed sea surface temperature (SST) and climatological temperature profiles in the SCS, mixed layer deepening, an important parameter characterizing turbulent mixing and upwelling driven by strong typhoon winds, is derived. Corresponding to the SST drop of 4.4°C on 3 November 2006, the mixed layer deepened by 104.5 m relative to the undisturbed depth of 43.2 m, which is consistent with a simulation result from a mixed layer model. Furthermore, baroclinic geostrophic velocity and vorticity are calculated from the surface temperature gradient caused by the typhoon. The negative vorticity, associated with the typhoon cooling, indicated an anticyclonic baroclinic circulation strongest at the base of the mixed layer and at the depth of 50 m, the geostrophic speed reached as high as 0.2 m s−1. Typhoon Cimaron proceeded slowly (1.7 m s−1) when it was making a southwestward turn on 3 November 2006, resulting in a subcritical condition with a Froude number (the ratio of typhoon translation speed to first baroclinic mode speed) of 0.6 around the maximum SST drop location and facilitating high SST cooling and mixed layer deepening because of the absence of inertial-gravity waves in the wake of the typhoon. Comparison of Argo buoy data with the climatological temperature suggests that the average uncertainty in the mixed layer deepening estimation caused by the difference between Argo and climatological temperature profiles is less than 10 m.


2019 ◽  
Vol 6 (5) ◽  
pp. 886-890 ◽  
Author(s):  
Minghui Zhao ◽  
Jean-Claude Sibuet ◽  
Jonny Wu

2012 ◽  
Vol 25 (9) ◽  
pp. 3207-3218 ◽  
Author(s):  
Yoshiyuki Kajikawa ◽  
Bin Wang

A significant advance in the onset dates of the South China Sea summer monsoon (SCSSM) is detected around 1993/94: the epochal mean onset date is 30 May for 1979–93 and 14 May for 1994–2008. The relatively late onset during the first epoch is primarily determined by the northward seasonal march of the intertropical convergence zone, whereas the advanced onset during the second epoch is affected by the enhanced activity of northwestward-moving tropical disturbances from the equatorial western Pacific. During 1994–2008, the intraseasonal variability (ISV) over the western Pacific was enhanced during the period from mid-April to mid-May; further, the number of tropical cyclones (TCs), which passed through the South China Sea (SCS) and Philippine Sea during the same period, is about doubled compared with those occurring during 1979–93. This enhanced ISV and TC activity over the SCS and Philippine Sea are attributed to a significant increase in SST over the equatorial western Pacific from the 1980s to 2000s. Therefore, the advanced SCSSM onset is rooted in the decadal change of the SST over the equatorial western Pacific.


2015 ◽  
Vol 28 (15) ◽  
pp. 5952-5968 ◽  
Author(s):  
Wei Mei ◽  
Chun-Chi Lien ◽  
I.-I. Lin ◽  
Shang-Ping Xie

Abstract The thermocline shoals in the South China Sea (SCS) relative to the tropical northwest Pacific Ocean (NWP), as required by geostrophic balance with the Kuroshio. The present study examines the effect of this difference in ocean state on the response of sea surface temperature (SST) and chlorophyll concentration to tropical cyclones (TCs), using both satellite-derived measurements and three-dimensional numerical simulations. In both regions, TC-produced SST cooling strongly depends on TC characteristics (including intensity as measured by the maximum surface wind speed, translation speed, and size). When subject to identical TC forcing, the SST cooling in the SCS is more than 1.5 times that in the NWP, which may partially explain weaker TC intensity on average observed in the SCS. Both a shallower mixed layer and stronger subsurface thermal stratification in the SCS contribute to this regional difference in SST cooling. The mixed layer effect dominates when TCs are weak, fast-moving, and/or small; and for strong and slow-moving TCs or strong and large TCs, both factors are equally important. In both regions, TCs tend to elevate surface chlorophyll concentration. For identical TC forcing, the surface chlorophyll increase in the SCS is around 10 times that in the NWP, a difference much stronger than that in SST cooling. This large regional difference in the surface chlorophyll response is at least partially due to a shallower nutricline and stronger vertical nutrient gradient in the SCS. The effect of regional difference in upper-ocean density stratification on the surface nutrient response is negligible. The total annual primary production increase associated with the TC passage estimated using the vertically generalized production model in the SCS is nearly 3 times that in the NWP (i.e., 6.4 ± 0.4 × 1012 versus 2.2 ± 0.2 × 1012 g C), despite the weaker TC activity in the SCS.


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 595-601 ◽  
Author(s):  
C D Shen ◽  
W X Yi ◽  
K F Yu ◽  
Y M Sun ◽  
Y Yang ◽  
...  

Twenty-two annually banded samples of coral from 1977 to 1998 were collected from Daya Bay, South China Sea, and bomb 14C concentrations were determined. The interannual variation of coral Δ14C is controlled mainly by oceanic factors. In ENSO years, the coastwise upwelling current of the South China Sea has been intensified; hence, the coral Δ14C displays its minimum value. The interannual variation curve of Δ14C in coral bears a relationship with the Southern Oscillation Index (SOI) curves: the correlation coefficient between Δ14C and (SOI)w is 0.43 and the correlation coefficient between Δ14C and (SOI)y is 0.27. The coral Δ14C has no remarkable response to the variation of solar radiation energy. In the past 20 yr or so, the general situation and oceanic thermal structure of the South China Sea are still stable even though interannual variations in atmosphere-sea interaction and upwelling current driven by the tropical energy have occurred.


Sign in / Sign up

Export Citation Format

Share Document