An Operational System for Predicting Hurricane-Generated Wind Waves in the North Atlantic Ocean*

2005 ◽  
Vol 20 (4) ◽  
pp. 652-671 ◽  
Author(s):  
Yung Y. Chao ◽  
Jose-Henrique G. M. Alves ◽  
Hendrik L. Tolman

Abstract A new wind–wave prediction model, referred to as the North Atlantic hurricane (NAH) wave model, has been developed at the National Centers for Environmental Prediction (NCEP) to produce forecasts of hurricane-generated waves during the Atlantic hurricane season. A detailed description of this model and a comparison of its performance against the operational western North Atlantic (WNA) wave model during Hurricanes Isidore and Lili, in 2002, are presented. The NAH and WNA models are identical in their physics and numerics. The NAH model uses a wind field obtained by blending data from NCEP’s operational Global Forecast System (GFS) with those from a higher-resolution hurricane prediction model, whereas the WNA wave model uses winds provided exclusively by the GFS. Relative biases of the order of 10% in the prediction of maximum wave heights up to 48 h in advance, indicate that the use of higher-resolution winds in the NAH model provides a successful framework for predicting extreme sea states generated by a hurricane. Consequently, the NAH model has been made operational at NCEP for use during the Atlantic hurricane season.

2010 ◽  
Vol 25 (5) ◽  
pp. 1543-1567 ◽  
Author(s):  
Yung Y. Chao ◽  
Hendrik L. Tolman

Abstract Unprecedented numbers of tropical cyclones occurred in the North Atlantic Ocean and the Gulf of Mexico in 2005. This provides a unique opportunity to evaluate the performance of two operational regional wave forecasting models at the National Centers for Environmental Prediction (NCEP). This study validates model predictions of the tropical cyclone–generated maximum significant wave height, simultaneous spectral peak wave period, and the time of occurrence against available buoy measurements from the National Data Buoy Center (NDBC). The models used are third-generation operational wave models: the Western North Atlantic wave model (WNA) and the North Atlantic Hurricane wave model (NAH). These two models have identical model physics, spatial resolutions, and domains, with the latter model using specialized hurricane wind forcing. Both models provided consistent estimates of the maximum wave height and period, with random errors of typically less than 25%, and timing errors of typically less than 5 h. Compared to these random errors, systematic model biases are negligible, with a typical negative model bias of 5%. It appears that higher wave model resolutions are needed to fully utilize the specialized hurricane wind forcing, and it is shown that present routine wave observations are inadequate to accurately validate hurricane wave models.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

2014 ◽  
Vol 31 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Federico Ienna ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean eddies (meddies), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of ensemble empirical mode decomposition (EEMD) as a means to isolate the surface expressions of meddies on the ocean surface and separates them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6-month time period (2 November 2005 to 17 May 2006). Results of the satellite tracking method are verified using expendable bathythermographs (XBT).


Sign in / Sign up

Export Citation Format

Share Document