High-Speed Fluctuations in Surface-Enhanced Raman Scattering Intensities from Various Nanostructures

2020 ◽  
Vol 74 (11) ◽  
pp. 1398-1406
Author(s):  
Ariadne T. Bido ◽  
Britta G. Nordberg ◽  
Marit A. Engevik ◽  
Nathan C. Lindquist ◽  
Alexandre G. Brolo

The observation of single molecule events using surface-enhanced Raman scattering (SERS) is a well-established phenomenon. These events are characterized by strong fluctuations in SERS intensities. High-speed SERS intensity fluctuations (in the microsecond time scale) have been reported for experiments involving single metallic particles. In this work, the high-speed SERS behavior of six different types of nanostructured metal systems (Ag nanoshells, Ag nanostars, Ag aggregated spheres, Au aggregated spheres, particle-on-mirror, and Ag deposited on microspheres) was investigated. All systems demonstrated high-speed SERS intensity fluctuations. Statistical analysis of the duration of the SERS fluctuations yielded tailed distributions with average event durations around 100 μs. Although the characteristics of the fluctuations seem to be random, the results suggest interesting differences between the system that might be associated with the strength distribution and density of the localized SERS hotspots. For instance, systems with more localized fields, such as nanostars, present faster fluctuation bursts compared to metallic aggregates that support spread-out fields. The results presented here appear to confirm that high-speed SERS intensity fluctuations are a fundamental characteristic of the SERS effect.

Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 449
Author(s):  
Francesco Dell’Olio

The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.


Sign in / Sign up

Export Citation Format

Share Document