scholarly journals Adaptive fuzzy practical tracking control for flexible-joint robots via command filter design

2020 ◽  
Vol 53 (5-6) ◽  
pp. 814-823
Author(s):  
Shuzhen Diao ◽  
Wei Sun ◽  
Wenxing Yuan

This paper investigates the issue of finite-time tracking control for flexible-joint robots. In the design scheme, the unknown continuous function is identified by a fuzzy system. By introducing the command filter technique, “explosion of complexity” problem which arises from repeated differentiation of virtual controllers is avoided. Meanwhile, errors resulting from the first-order filters can be reduced with the introduced compensation signal. Besides, the proposed method ensures that the tracking performance could be achieved within a limited time. Eventually, the simulation is given to demonstrate the effectiveness of the proposed scheme.

2015 ◽  
Vol 23 (9) ◽  
pp. 1535-1547 ◽  
Author(s):  
Majid Moradi Zirkohi ◽  
Mohammad Mehdi Fateh

This paper presents a novel decentralized tracking control system of electrically driven flexible-joint robots by adaptive type-2 fuzzy estimation and compensation of uncertainties. Owing to using voltage control strategy, the proposed control approach has important advantages over the torque control approaches in terms of being free from manipulator dynamics, computationally simple and decoupled. The design includes two interior loops: the inner loop controls the motor position while the outer loop controls the joint angle of the robot. An adaptive proportional–integral–derivative controller governs the outer loop, whereas a robust nonlinear controller supported by estimation of uncertainty is employed for the inner loop. More specifically, the main contribution of the paper arises from this fact that the proposed control method uses the interval Type-2 Fuzzy Logic systems for estimation of uncertainty. This is the main difference between this paper and those published in literature. One advantage of the proposed approach is that it uses available feedbacks as an important advantage from a practical point of view. The method is verified by stability analysis and its effectiveness is demonstrated by simulations. The direct method of Lyapunov is utilized for stability analysis of the proposed approach. The case of study is the tracking control of a three-joint articulated flexible-joint robot driven by permanent magnet DC motors. Simulation results show the superior robustness of the type-2 fuzzy system to Type-1 fuzzy system.


2004 ◽  
Vol 126 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Tarunraj Singh

The focus of this paper is on the design of jerk limited input shapers (time-delay filters). Closed form solutions for the jerk limited time-delay filter for undamped systems is derived followed by the formulation of the problem for damped systems. Since the jerk limited filter involves concatenating an integrator to a time-delay filter, a general filter design technique is proposed where smoothing of the shaped input can be achieved by concatenating transfer functions of first order, harmonic systems, etc.


Author(s):  
Jorge Montoya‐Cháirez ◽  
Javier Moreno‐Valenzuela ◽  
Víctor Santibáñez ◽  
Ricardo Carelli ◽  
Fracisco G. Rossomando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document