Three-Dimensional Elasticity Solution of a Composite Beam
This investigation was undertaken to develop a rigorous mathe matical solution of stress and strain for a composite pole con sisting of a reinforced plastics jacket laminated on a solid wood core. The wood and plastics are treated as orthotropic materials. The problem of bending of such poles as cantilever beams has been determined by the application of the principles of three- dimensional theory of elasticity. Values of all components of the stress tensor in cylindrical coordinates are given for the core and jacket. Exact values for the stresses have been obtained from computer results, using the basic elastic constants—Poisson's ratios, moduli of elasticity and moduli of rigidity—for each ma terial. A comparison of the numerical results of the exact solu tion with strength of materials solutions has been completed.