scholarly journals Autometallographic Silver Enhancement of Zinc Sulfide Crystals Created in Cryostat Sections from Human Brain Biopsies: A New Technique that Makes it Feasible to Demonstrate Zinc Ions in Tissue Sections from Biopsies and Early Autopsy Material

1997 ◽  
Vol 45 (11) ◽  
pp. 1503-1510 ◽  
Author(s):  
Gorm Danscher ◽  
S⊘ren Juhl ◽  
Meredin Stoltenberg ◽  
Bjarne Krunderup ◽  
Henrik D. Schr⊘der ◽  
...  

We present a new technique that allows zinc ions in synaptic and secretory vesicles of biopsy and early autopsy material (>2 hr post mortem) to be transformed to nanometer-sized zinc sulfide crystal lattices for subsequent autometallographic (AMG) development. Human brain biopsies, or other tissue samples containing zinc-enriched (ZEN) cells, are frozen in liquid nitrogen or by CO2 gas immediately after removal. The tissue blocks are cut in a cryostat and the sections placed on glass slides. The slides are transferred to an H2S exposure chamber placed in a −15C freezer. After 1–24 hr of gas exposure the sections are removed from the chamber, fixed while thawing, and dehydrated. The sections are then exposed to an AMG developer. AMG causes silver enhancement of zinc sulfide crystal lattices created in the tissues through the H2S exposure, making them visible. It is imperative that the tissues are frozen instantaneously after removal, because loosely bound or free zinc ions start leaving their vesicular compartment soon after death. The AMG technique can, despite inadequate fixation and damage to the tissue caused by freezing, also be used to trace zinc ions at ultrastructural levels, and it is demonstrated that zinc ions in the human neocortex are located in synaptic vesicles. In the few human biopsies analyzed thus far, the light microscopic pattern created by the silver-enhanced ZEN terminals resembles that seen in the neocortex of rat brain. The technique has been applied to cryostat sections from neocortex biopsies of five individuals undergoing brain surgery. Biopsies from three patients resulted in satisfactory AMG-stained sections. Rat brains removed and frozen immediately after decapitation constituted the material on which the present technique was developed. Such material results in an almost uniform high quality of staining, and we found that unexposed sections can be stored for at least 5 months at −80C without ensuing significant loss of AMG staining intensity. (J Histochem Cytochem 45:1503–1510, 1997)

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S543-S543
Author(s):  
Satoshi Kimura ◽  
Keigo Matsumoto ◽  
Yoshio Imahori ◽  
Katsuyoshi Mineura ◽  
Toshiyuki Itoh

2009 ◽  
Vol 56 (S 01) ◽  
Author(s):  
J Bickenbach ◽  
R Rossaint ◽  
R Autschbach ◽  
R Dembinski

Sign in / Sign up

Export Citation Format

Share Document