scholarly journals A novel anti-swing and position control method for overhead crane

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988353
Author(s):  
Xuejuan Shao ◽  
Jinggang Zhang ◽  
Xueliang Zhang ◽  
Zhicheng Zhao ◽  
Zhimei Chen

Based on Takagi–Sugeno fuzzy modeling and linear matrix inequality with decay rate, this article presents a novel anti-swing and position control scheme for overhead cranes. First, the simplified nonlinear dynamic model is proposed by adopting a virtual control variable method to reduce the number of nonlinear terms. Then, the Takagi–Sugeno fuzzy model is constructed using sector nonlinear technique, and the anti-swing and position controller of overhead crane is designed based on a linear matrix inequality with decay rate. Finally, the proposed control method is compared with the traditional Takagi–Sugeno fuzzy control method, and robustness of the system is discussed. The simulation results demonstrate that the proposed method is feasible and effective.

2019 ◽  
Vol 26 (9-10) ◽  
pp. 643-645
Author(s):  
Xuefeng Zhang

This article shows that sufficient conditions of Theorems 1–3 and the conclusions of Lemmas 1–2 for Takasi–Sugeno fuzzy model–based fractional order systems in the study “Takagi–Sugeno fuzzy control for a wide class of fractional order chaotic systems with uncertain parameters via linear matrix inequality” do not hold as asserted by the authors. The reason analysis is discussed in detail. Counterexamples are given to validate the conclusion.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989210 ◽  
Author(s):  
Guangfei Xu ◽  
Peisong Diao ◽  
Xiangkun He ◽  
Jian Wu ◽  
Guosong Wang ◽  
...  

In the research process of automotive active steering control, due to the model uncertainty, road surface interference, sensor noise, and other influences, the control accuracy of the active steering system will be reduced, and the driver’s road sense will become worse. The traditional robust controller can solve the model uncertainty, pavement disturbance and sensor noise in the design process, but cannot consider the performance enough. Therefore, this article proposes an active steering control method based on linear matrix inequality. In this method, the model uncertainty, road interference, sensor noise, yaw velocity, and slip side angle tracking errors are all considered as constraint targets, respectively, so that the performance and robust stability of the active front steering system can be guaranteed. Finally, simulation and hardware in the loop experiment are implemented to verify the effect of active front steering system under the linear matrix inequality controller. The results show that the proposed control method can achieve better robust performance and robust stability.


2014 ◽  
Vol 998-999 ◽  
pp. 638-641
Author(s):  
Shi Jie Xu ◽  
J.F. Xing ◽  
Li Kun Peng

A nonlinear controller is presented for a digital hydraulic cylinder against disturbance. We first establish the nonlinear model of digital hydraulic cylinder position control system. Then a Lyapunov function and a nonlinear controller are presented. The controller designing problem is translated into the problem of solving a linear matrix inequality. The experiment results show that the controller proposed by this paper has much better performance than traditional one.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaofang Kang ◽  
Peipei Zhang ◽  
Yiwei Zhang ◽  
Dawei Man ◽  
Qinghu Xu ◽  
...  

A decentralized control scheme can effectively solve the control problem of civil engineering structure vibration under earthquake. This paper takes a research into the decentralized control scheme of adjacent buildings when the earthquake happens. It combines overlapping decentralized control method and linear matrix inequality (LMI) with H ∞ control algorithm and puts forward the overlapping decentralized H ∞ control method. A simplified dynamical model of structural vibration control has been established considering the topology structural features of adjacent buildings. The H ∞ control algorithm is applied into each dynamically different subsystems and can be also served as the decentralized H ∞ controllers. Therefore, by contracting decentralized H ∞ controllers to original state space, overlapping decentralized H ∞ controllers are obtained. In this manner, the adjacent buildings’ structure model is analyzed in terms of simulation and calculation which provides a comprehensive insight into vibration control. The results show that the centralized control, the decentralized control, and the overlapping decentralized control, based on linear matrix inequality, can be nearly effective in cases above satisfactorily. Besides, it can also reduce the computational cost as well as increase the flexibility of controller design.


2006 ◽  
Vol 128 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Sing Kiong Nguang ◽  
Peng Shi

This paper investigates the H∞ output feedback control design for a class of uncertain nonlinear systems with Markovian jumps which can be described by Takagi-Sugeno models. Based on a linear matrix inequality (LMI), LMI-based sufficient conditions for the existence of a robust output feedback controller, such that the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value, are derived. An illustrative example is used to demonstrate the effectiveness of the proposed design techniques.


Sign in / Sign up

Export Citation Format

Share Document