scholarly journals Computing locating-total domination number in some rotationally symmetric graphs

2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110534
Author(s):  
Hassan Raza ◽  
Naveed Iqbal ◽  
Hamda Khan ◽  
Thongchai Botmart

Let [Formula: see text] be a connected graph. A locating-total dominating set in a graph G is a total dominating set S of a G, for every pair of vertices [Formula: see text], such that [Formula: see text]. The minimum cardinality of a locating-total dominating set is called locating-total domination number and represented as [Formula: see text]. In this paper, locating-total domination number is determined for some cycle-related graphs. Furthermore, some well-known graphs of convex polytopes from the literature are also considered for the locating-total domination number.

2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1010
Author(s):  
Fang Miao ◽  
Wenjie Fan ◽  
Mustapha Chellali ◽  
Rana Khoeilar ◽  
Seyed Mahmoud Sheikholeslami ◽  
...  

A vertex v of a graph G = ( V , E ) , ve-dominates every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a double vertex-edge dominating set if every edge of E is ve-dominated by at least two vertices of S. The double vertex-edge domination number γ d v e ( G ) is the minimum cardinality of a double vertex-edge dominating set in G. A subset S ⊆ V is a total dominating set (respectively, a 2-dominating set) if every vertex in V has a neighbor in S (respectively, every vertex in V - S has at least two neighbors in S). The total domination number γ t ( G ) is the minimum cardinality of a total dominating set of G, and the 2-domination number γ 2 ( G ) is the minimum cardinality of a 2-dominating set of G . Krishnakumari et al. (2017) showed that for every triangle-free graph G , γ d v e ( G ) ≤ γ 2 ( G ) , and in addition, if G has no isolated vertices, then γ d v e ( G ) ≤ γ t ( G ) . Moreover, they posed the problem of characterizing those graphs attaining the equality in the previous bounds. In this paper, we characterize all trees T with γ d v e ( T ) = γ t ( T ) or γ d v e ( T ) = γ 2 ( T ) .


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jianxin Wei ◽  
Uzma Ahmad ◽  
Saira Hameed ◽  
Javaria Hanif

For a connected graph J, a subset W ⊆ V J is termed as a locating-total dominating set if for a ∈ V J ,   N a ∩ W ≠ ϕ , and for a ,   b ∈ V J − W ,   N a ∩ W ≠ N b ∩ W . The number of elements in a smallest such subset is termed as the locating-total domination number of J. In this paper, the locating-total domination number of unicyclic graphs and bicyclic graphs are studied and their bounds are presented. Then, by using these bounds, an upper bound for cacti graphs in terms of their order and number of cycles is estimated. Moreover, the exact values of this domination variant for some families of cacti graphs including tadpole graphs and rooted products are also determined.


Author(s):  
Saeid Alikhani ◽  
Nasrin Jafari

Let $G = (V, E)$ be a simple graph of order $n$. A  total dominating set of $G$ is a subset $D$ of $V$, such that every vertex of $V$ is adjacent to at least one vertex in  $D$. The total domination number of $G$ is  minimum cardinality of  total dominating set in $G$ and is denoted by $\gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=\sum_{i=\gamma_t(G)}^n d_t(G,i)$, where $d_t(G,i)$ is the number of total dominating sets of $G$ of size $i$. In this paper, we study roots of the total domination polynomial of some graphs.  We show that  all roots of $D_t(G, x)$ lie in the circle with center $(-1, 0)$ and radius $\sqrt[\delta]{2^n-1}$, where $\delta$ is the minimum degree of $G$. As a consequence, we prove that if $\delta\geq \frac{2n}{3}$,  then every integer root of $D_t(G, x)$ lies in the set $\{-3,-2,-1,0\}$.


Let G be a simple graph with vertex set V(G) and edge set E(G). A set S of vertices in a graph 𝑮(𝑽,𝑬) is called a total dominating set if every vertex 𝒗 ∈ 𝑽 is adjacent to an element of S. The minimum cardinality of a total dominating set of G is called the total domination number of G which is denoted by 𝜸𝒕 (𝑮). The energy of the graph is defined as the sum of the absolute values of the eigen values of the adjacency matrix. In this paper, we computed minimum total dominating energy of a Friendship Graph, Ladder Graph and Helm graph. The Minimum total dominating energy for bistar graphand sun graph is also determined.


10.37236/983 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. Let $G$ be a connected graph of order $n$ with minimum degree at least two and with maximum degree at least three. We define a vertex as large if it has degree more than $2$ and we let ${\cal L}$ be the set of all large vertices of $G$. Let $P$ be any component of $G - {\cal L}$; it is a path. If $|P| \equiv 0 \, ( {\rm mod} \, 4)$ and either the two ends of $P$ are adjacent in $G$ to the same large vertex or the two ends of $P$ are adjacent to different, but adjacent, large vertices in $G$, we call $P$ a $0$-path. If $|P| \ge 5$ and $|P| \equiv 1 \, ( {\rm mod} \, 4)$ with the two ends of $P$ adjacent in $G$ to the same large vertex, we call $P$ a $1$-path. If $|P| \equiv 3 \, ( {\rm mod} \, 4)$, we call $P$ a $3$-path. For $i \in \{0,1,3\}$, we denote the number of $i$-paths in $G$ by $p_i$. We show that the total domination number of $G$ is at most $(n + p_0 + p_1 + p_3)/2$. This result generalizes a result shown in several manuscripts (see, for example, J. Graph Theory 46 (2004), 207–210) which states that if $G$ is a graph of order $n$ with minimum degree at least three, then the total domination of $G$ is at most $n/2$. It also generalizes a result by Lam and Wei stating that if $G$ is a graph of order $n$ with minimum degree at least two and with no degree-$2$ vertex adjacent to two other degree-$2$ vertices, then the total domination of $G$ is at most $n/2$.


2011 ◽  
Vol 3 (3) ◽  
pp. 547-555 ◽  
Author(s):  
B. Basavanagoud ◽  
S. M. Hosamani

Let  be a graph. A set  of a graph  is called a total dominating set if the induced subgraph  has no isolated vertices. The total domination number  of G is the minimum cardinality of a total dominating set of G. A total dominating set D is said to be a complete cototal dominating set if the induced subgraph  has no isolated vertices. The complete cototal domination number  of G is the minimum cardinality of a complete cototal dominating set of G. In this paper, we initiate the study of complete cototal domination in graphs and present bounds and some exact values for . Also its relationship with other domination parameters are established and related two open problems are explored.Keywords: Domination number; Total domination number; Cototal domination number; Complete cototal domination number.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i3.7744               J. Sci. Res. 3 (3), 557-565 (2011)


Let 𝑮 = (𝑽,𝑬) be a simple, finite, connected and undirected graph with vertex set V(G) and edge set E(G). Let 𝑺 ⊆ 𝑽(𝑮). A set S of vertices of G is a dominating set if every vertex in 𝑽 𝑮 − 𝑺 is adjacent to at least one vertex in S. A set S of vertices in a graph 𝑮(𝑽,𝑬) is called a total dominating set if every vertex 𝒗 ∈ 𝑽 is adjacent to an element of S. The minimum cardinality of a total dominating set of G is called the total domination number of G which is denoted by 𝜸𝒕 (𝑮). The energy of the graph is defined as the sum of the absolute values of the eigen values of the adjacency matrix. In this paper, we computed minimum total dominating energy of some special graphs such as Paley graph, Shrikhande graph, Clebsch graph, Chvatal graph, Moser graph and Octahedron graph.


Sign in / Sign up

Export Citation Format

Share Document