Image Analysis of Woven Fabric Surface Irregularity

2001 ◽  
Vol 71 (8) ◽  
pp. 666-671 ◽  
Author(s):  
Akio Sakaguchi ◽  
Guang Hua Wen ◽  
Yo-ichi Matsumoto ◽  
Koichiro Toriumi ◽  
Hyungsup Kim
2021 ◽  
pp. 004051752110191
Author(s):  
Beti Rogina-Car ◽  
Stana Kovačević

The aim of this study was to investigate the damage to cotton fabrics (ticking and damask) caused by stitching with three types of needle point shapes (R, SES and SUK) and four needle sizes (70, 80, 90 and 100 Nm). Damage to the yarn and the surface area of the hole were investigated. Based on the results, it can be concluded that two types of damage occur during sewing: the needle passes through the warp/weft (it displaces the yarn) and the needle damages the warp/weft. An analysis and comparison of the surface area of the holes was carried out, obtained by a computer program based on microscopic images. The results show greater damage to the yarn at the needle piercing point in the ticking due to higher density, friction and low yarn migration. The largest surface area of the holes was produced when sewing with SUK-designated needles on ticking and damask. When sewing damask, R-designated needles cause the least damage to the piercing point, whereas SES-designated needles give the best results when sewing the ticking. Thread damage was further confirmed by testing the tensile properties of the yarn at the needle piercing points.


2019 ◽  
Vol 23 (1) ◽  
pp. 58-70
Author(s):  
Paniz Khosravani ◽  
Nazanin Ezazshahabi ◽  
Masoud Latifi

Purpose This paper aims to study the optical properties of woven fabrics. Design/methodology/approach The current study was carried out to objectively evaluate the luster of a group of woven fabrics with different weave structures and weft densities, with the aid of a goniophotometer. The results obtained from the objective luster measurement were validated by a set of pair comparison subjective tests using Thurstone’s law of comparative judgment. Findings The proper correlation with the R2 value of more than 0.96, between subjective and objective tests, confirmed the reliability and accordance of objective results with the human perception of luster. Statistical analysis of the luster results clarified that the effect of fabric structural parameters such as weave structure and weft density are significant at the confidence range of 95 per cent. The highest luster index was achieved for the twill 3/1 weave structure and the lowest luster belonged to the plain pattern. In addition, an increase in the density of the fabric leads to better luster. Moreover, it was concluded that the surface roughness affects the luster. A rise in the roughness value of the woven fabric causes reduction in its luster property. Originality/value Optical properties of woven fabrics, which are mainly attributed through the measurement of luster, are important for qualifying the aesthetic characteristics of the fabrics with various weave structures. Bearing in mind the influence of fabric surface properties on the aesthetic features of cloths, obtaining information in this field is a guide for selecting the suitable fabric for various end uses.


2008 ◽  
Vol 12 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Kavita Mathur ◽  
Abdel-Fattah M. Seyam ◽  
David Hinks ◽  
R. Alan Donaldson

Today, Jacquard woven fabric producers are able to digitally control each warp yarn individually, pre-program the variable pick density and speed for each filling yarn, and automatically change a pattern without stopping the weaving process. Jacquard CAD systems dramatically reduce the time to produce fabric from the artwork or target design The process of weave/color selection for each area of the pattern is, however, still highly dependent on the CAD system operator who works from a particular color gamut. Multiple weaving trials are required to get a sample that matches the original artwork since the process requires the designer‘s subjective evaluation. The lack of automatic selection of weaves/color matching prompts this research. This paper addresses the development of a geometric model for predicting the color contribution of each warp and filling yarn on the fabric surface in terms of construction parameters. The combination of geometric modeling and existing color mixing equations enables the prediction of the final color of different areas of a Jacquard pattern. The model was verified experimentally and a close agreement was found between a color mixing equation and the experimental measurements.


1995 ◽  
Vol 65 (11) ◽  
pp. 683-692 ◽  
Author(s):  
Warren J. Jasper ◽  
Harsh Potlapalli
Keyword(s):  

2013 ◽  
Vol 14 (7) ◽  
pp. 1208-1214 ◽  
Author(s):  
Jihong Liu ◽  
Bo Zhu ◽  
Hongxia Jiang ◽  
Weidong Gao

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Imana Shahrin Tania ◽  
Mohammad Ali ◽  
Riyadh Hossen Bhuiyan

AbstractThe purposes of the current research were to deposit the silver nanoparticles on the surface of a textile woven fabric and evaluate their dyeing performance and antibacterial activity. The synthesis of silver nanoparticle (Ag°) is done by the in situ method. Strong alkali is used to improve functionality of cellulose before the application of silver nitrate salt (AgNO3). The silver nanoparticle is formed by reduction of ascorbic acid. Various instrumental analyses are done to prove the formation of nanoparticles on the fabric surface. The morphology of nanodeposited fabric is characterized by using scanning electron microscope (SEM), elemental composition is done by energy dispersive spectroscopy, and crystallinity of nanoparticles is obtained by X-ray diffraction (XRD). Nanodeposited fabric is then dyed with direct dyestuff (Direct Red-89). Fourier transform infrared spectroscopy analysis is done to explore the bonding phenomena of un-dyed and dyed fabrics. The dyeing performance and antibacterial activity are examined on the colored fabric to investigate the dyed fabric quality after nanoparticle deposition. Results demonstrate the improvement of 54% of color strength and 11% of dye exhaustion with excellent antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document