warp yarn
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 26)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 004051752110661
Author(s):  
Yong Wang ◽  
Qifan Qiao ◽  
Zongqian Wang ◽  
Changlong Li ◽  
Stuart Gordon

The ability of a fabric to wick moisture away from the human body directly determines the moisture management ability of any given textile, and thereby has a great influence on the comfort offered by garments made from that textile. In this paper, the effects of tensile extension and liquid drop height on the transverse wicking behavior of a warp stretch woven fabric were systematically investigated. By virtue of the unique structure of the nylon/spandex air-covered warp yarn, the woven fabric has a denser and tighter surface, which facilitates its warp elastic stretchability beyond 60%. Furthermore, an acceptable cyclic tensile behavior at an extension of 30% was obtained, indicating the superior mechanical robustness of the fabric to a certain extent. The experimental results demonstrated that the transverse wicking performances of the fabric, including the wetting time and liquid spreading area, were dependent on the tensile extensions and the heights between the water droplet and the fabric surface. Specifically, the wetting time increased with an increase of tensile extension or a decrease of liquid drop height. The spreading area of the water droplet increases as a function of the wicking time, and it fits a power relation appropriately. In addition, the water vapor transmission behavior of our fabric during stretch was clarified. Such work is essential to get an in-depth evaluation of the wicking behavior of complex stretchable fabric structures.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6664
Author(s):  
Yeasin Ali ◽  
Atik Faisal ◽  
Abu Saifullah ◽  
Hom N. Dhakal ◽  
Shah Alimuzzaman ◽  
...  

This work developed novel jute-yarn, non-crimp, unidirectional (UD) preforms and their composites, with three different types of warp jute yarns of varying linear densities and twists in the dry UD preforms, in order to present a possible solution to the detrimental effects of higher yarn twists and crimp at the warp–weft yarn interlacements of traditional, woven, preform-based composites on their mechanical properties. In the developed UD preforms, warp jute yarns were placed in parallel by using a wooden picture-frame pin board, with the minimal number of glass weft yarns to avoid crimp at the warp–weft yarns interlacements, which can significantly enhance the load-bearing ability of UD composites compared to traditional, woven, preform composites. It was found that an optimal combination of jute warp yarn linear densities and twists in the UD preforms is important to achieve the best possible mechanical properties of newly developed UD composites, because it encourages a proper polymer-matrix impregnation on jute fibres, leading to excellent fibre–matrix interface bonding. Composites made from the 25 lb/spindle jute warp yarn linear density (UD25) exhibited higher tensile and flexural properties than other UD composites (UD20, UD30). All the UD composites showed a much better performance compared to the traditional woven preform composites (W20), which were obviously related to the higher crimp and yarn interlacements, less load-carrying capacity, and poor fiber–matrix interfaces of W20 composites. UD25 composites exhibited a significant enhancement in tensile modulus by ~232% and strength by ~146%; flexural modulus by 138.5% and strength by 145% compared to W20 composites. This reveals that newly developed, non-crimp, UD preform composites can effectively replace the traditional woven composites in lightweight, load-bearing, complex-shaped composite applications, and hence, this warrants further investigations of the developed composites, especially on long-term and dynamic-loading mechanical characterizations.


Author(s):  
Yajie Gao ◽  
Xiaogang Chen

AbstractThe paper presents a study on woven fabrics made of helical auxetic yarns (HAYs) and their key factors on Poisson’s ratio under tension. The work aims to create and evaluate auxetic woven fabrics with optimal parameters for achieving better auxeticity including weave structure, wrapping angle of the auxetic yarn, thickness of the auxetic yarn and properties of the warp yarn. The maximum negative Poisson’s ratio (NPR) of the woven fabric can be achieved as low as -2.92 for experiments. Then, a numerical study has been carried out as well to assist the development of auxetic woven fabrics. The findings of this paper showed longer float length, lower wrapping angle of the auxetic yarn, a thinner diameter of the auxetic yarn as well as lower tensile modulus of the warp yarn led to higher auxetic behaviour. This can also provide a reference for researchers to select the best parameters for producing the auxetic woven fabrics.


2021 ◽  
pp. 136943322110427
Author(s):  
Xiaofei Zhang ◽  
Xin Wang ◽  
Zheqi Peng ◽  
Zhongguo Zhu ◽  
Zhishen Wu

In this study, the mechanical properties of the basalt leno textile applied as concrete reinforcement were experimentally investigated considering different parameters including the impregnation materials, geometrical characteristics (the number of yarns, yarn structure, and yarn spacing), and loading rate. The tensile strength, elastic modulus, and failure mode were examined. Furthermore, the force mechanism of impregnated leno textile under tensile load was analyzed. The experimental results showed that the textile with a stiff impregnation material exhibited a higher strength and modulus than that with a flexible material. The leno textile with the straight yarn had a better performance than those with the twisted yarns. Besides, the constraint of the weft yarns is obvious to the textile in the warp direction, while the warp yarn makes no contributions to the bearing capacity of textile in the weft direction. The weft yarn spacing had a significant impact on mechanical properties of the textile in the warp direction. Furthermore, the loading rate of approximately 1.2 mm/min was suggested to determine the maximum force of the impregnated basalt leno textile. A tensile strength model was proposed considering the effects of the impregnation material, consistent deformation, torsion damage, and twisted angle.


2021 ◽  
Vol 3 (1) ◽  
pp. 43-48
Author(s):  
Filly Pravitasari ◽  
Afriani Kusumadewi

The process of applying starch to the warp yarn in order to increase the weaving power of the warp yarn in the presence of a starch layer,  is expected to increase the strength of the yarn and reduce the yarn hairs. One of the factors that influence the sizing process is the amount of pressure in the squeezing roll. In this process, the sizing machine uses a double size box and each size box has 2 (two) squeezing rolls. The material used is Combed Ne 40 yarn with construction ,which is the amount of tetal or the density of the yarn with the construction included in the tetal of the dense warp yarn. The method used by comparing the pressure of squeezing roll process 1 and process 2. In the first process, the squeezing roll 1 is set at 3 kN and squeezing roll 2 is 3.5 kN, while in the second sizing process, the squeezing roll 1 is set at 4 kN and squeezing roll 2 for 5kN. After the experimental process was carried out, the starch warp yarn strength was obtained which was higher, namely 351.93gr and compared to process 2 which was 345.84 gr. The higher from the strength of the starchy yarn, can make it better for weaving process.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 877
Author(s):  
Mulat Alubel Abtew ◽  
Francois Boussu ◽  
Pascal Bruniaux ◽  
Yan Hong

The effects of the yarn composition system inside 3D woven high-performance textiles are not well investigated and understood against their final ballistic impact behaviour. The current study aims to examine the ballistic impact performances of armour panels made of different 3D woven fabric variants through postmortem observations. Four high-performance five-layer 3D woven fabric variants were engineered based on their different warp yarn compositions but similar area density. A 50 × 50 cm2 armour system of each variant, which comprises eight nonbonded but aligned panels, namely, 3D-40-8/0 (or 8/0), 3D-40-8/4 (or 8/4), 3D-40-8/8 (or 8/8) and 3D-40-4/8 (or 4/8), were prepared and moulded to resemble female frontal morphology. The armour systems were then tested with nonperforation ballistic impacts according to the National Institute of Justice (NIJ) 0101.06 standard Level-IIIA. Two high-speed cameras were used to capture the event throughout the test. Nondestructive investigation (NDI) using optical microscopic and stereoscopic 3D digital images were employed for the analysis. The armour panels made of the 8/0 and 4/8 fabric variants were perforated, whereas the armour made of the 8/8 and 8/4 fabric variants showed no perforation. Besides, the armour made of the 8/4 fabric variant revealed higher local and global surface displacements than the other armours. The current research findings are useful for further engineering of 3D woven fabric for seamless women’s impact protective clothing.


2021 ◽  
pp. 152808372098410
Author(s):  
Mehmet Korkmaz ◽  
Ayşe Okur ◽  
Ahmad Rashed Labanieh ◽  
François Boussu

Composite materials which are reinforced with 3D warp interlock fabrics have outstanding mechanical properties such as higher delamination resistance, ballistic damage resistance and impact damage tolerance by means of their improved structural properties. Textile reinforcements are exposed to large deformations in the production stage of composite materials which have complex shape. Although good formability properties of 3D warp interlock fabrics in forming process were already proven by recent studies, further information is needed to elucidate forming behaviours of multi-layer fabrics which is produced with high stiffness yarns like carbon. In this study, 3D warp interlock carbon fabrics were produced on a prototype weaving loom and the same carbon yarn was used in two fabric directions with equal number of yarn densities. Fabrics were differentiated with regard to the presence of stuffer warp yarn, weave pattern and parameters of binding warp yarn which are angle and depth. Therefore, the effect of fabric architecture on the mechanical and formability properties of 3D warp interlock carbon fabrics could be clarified. Three different breaking behaviours of fabrics were detected and they were correlated with crimp percentages of yarn groups. In addition, the bending and shear deformations were analysed in view of parameters of fabric architectures. Two distinct forming behaviours of fabrics were determined according to the distribution of deformation areas on fabrics. Moreover, the optimal structure was identified for forming process considering the fabric architecture.


2020 ◽  
pp. 152808372098017
Author(s):  
Jong Hyun Eun ◽  
Min Seong Kim ◽  
Sun Min Sung ◽  
Bo Kyoung Choi ◽  
In Uk Jang ◽  
...  

PVC coated fabric is a useful structural material mainly used as a roof material because of its lightweight, flexibility. However, the main issues of this PVC coated fabric product is that it is damaged such as tensile failure, peel, and tear when exposed to extreme environments such as strong rain and wind owing to its inferior mechanical properties. Various studies have been reported to improve the mechanical properties of PVC coated fabric, there have been no significant improvement. Therefore, in this study, to improve the mechanical properties of the PVC coated fabrics, applied the low viscosity PVC resin and 4 [Formula: see text] 4 matt weave structure polyester fabric. In addition, the mechanical properties of PVC coated fabrics with various viscosity PVC resins (D10, D8, D5, D2 and D0) were investigated and the mechanical properties of PVC coated fabrics with various weaving structure such as plain weave structure (1 [Formula: see text] 1), matt weave structure (2 [Formula: see text] 2, 3[Formula: see text] 3, and 4 [Formula: see text] 4) were studied. The PVC coated fabric fabricated by low viscosity PVC resin (D10), the tensile strength, tear load, and peel strength improved about 3%, 11%, and 29% compared to the PVC coated fabric fabricated by high viscosity PVC resin (D0). The mechanical properties of the PVC coated fabric fabricated by 4 × 4 matt weave structure polyester fabric was superior to the 1 × 1 plain weave structure polyester fabric and 2 × 2, 3 × 3 matt weave structure polyester fabrics because of the low crimp rate and low intersection point of the warp yarn and weft yarn of the fabric.


2020 ◽  
Vol 4 (4) ◽  
pp. 145
Author(s):  
Mulat Alubel Abtew ◽  
Francois Boussu ◽  
Pascal Bruniaux ◽  
Carmen Loghin ◽  
Irina Cristian

Materials used in the technical application including composite reinforcements and ballistic fabrics should show not only good mechanical performance but also better deformational behaviors. Meanwhile, three dimensional (3D) warp interlock fabrics have been widely employed in such applications to substitute the two dimensional (2D) fabrics because of their enhanced through-the-thickness performance and excellent formability. The deformational behaviors of such 3D warp interlock fabrics have been also influenced by various internal and external parameters. To understand and fill this gap, the current paper investigates the effects of the warp yarn interchange ratios inside the fabric structure on the formability behaviors of dry 3D warp interlock p-aramid fabrics. Four 3D warp interlock architecture types made with different binding and stuffer warp yarn interchange ratios were designed and manufactured. An adapted hydraulic-driven stamping bench along with hemispherical punch was utilized for better forming behavior analysis such as in-plane shear angle and its recovery, material drawing-in and its recovery, deformational depth recovery, and required stamping forces. Based on the investigation of various formability behaviors, the formability of (3D) warp interlock fabrics were greatly influenced by the binding and stuffer warp yarns interchange ratio inside the 3D warp interlock structure. For example, preform 3D-8W-0S exhibited a maximum deformational height recovery percentage of 5.1%, whereas 3D-4W-8S recorded only 0.72%. Preform 3D-8W-4S and 3D-8W-8S revealed 1.45% and 4.35% recovery percentages toward the deformational height at maximum position. Besides, sample 3D-4S-8W revealed the maximum drawing-in recovery percentage of 43.13% and 46.98% in the machine and cross direction, respectively, around the preform peripheral edges. On the contrary, samples with higher binding warp yarns as 3D-8W-0S show the maximum drawing-in recovery percentages values of 31.21% and 34.99% in the machine and cross directions respectively.


Sign in / Sign up

Export Citation Format

Share Document