Robust adaptive state estimation for uncertain nonlinear switched systems with unknown inputs

2016 ◽  
Vol 40 (4) ◽  
pp. 1082-1091 ◽  
Author(s):  
Junqi Yang ◽  
Yantao Chen ◽  
Zheng Zheng ◽  
Wei Qian

This paper discusses the issue of the continuous state estimation for a class of uncertain nonlinear switched systems under the two cases of both average dwell time and mode-dependent average dwell time. A robust and adaptive switched observer is developed such that the states of an original nonlinear switched system can be asymptotically estimated, where the Lipschitz constant of the nonlinear term may be unknown since the designed adaptation law can adaptively adjust it. Based on the feasible solution of an optimization problem with a linear matrix inequality constraint, the observer gain matrices are obtained and guarantee the existence of a robust switched observer. Meanwhile, the switching signals are designed such that the observer error dynamics is globally uniformly exponentially stable, and the sufficient conditions of the existence of a robust sliding-mode switched observer are derived. Finally, the effectiveness of the proposed approaches is illustrated by a numerical example and switched Rössler chaotic dynamics.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Li ◽  
Xiaodi Li ◽  
Jinde Cao

This paper studies the input-to-state stability (ISS) of nonlinear switched systems. By using Lyapunov method involving indefinite derivative and average dwell-time (ADT) method, some sufficient conditions for ISS are obtained. In our approach, the time-derivative of the Lyapunov function is not necessarily negative definite and that allows wider applications than existing results in the literature. Examples are provided to illustrate the applications and advantages of our general results and the proposed approach.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yongzhao Wang

This paper deals with the exponential stabilization problem for a class of nonlinear switched systems with mixed delays under asynchronous switching. The switching signal of the switched controller involves delay, which results in the asynchronous switching between the candidate controllers and subsystems. By constructing the parameter-dependent Lyapunov-Krasovskii functional and the average dwell time approach, some sufficient conditions in forms of linear matrix inequalities are presented to ensure the exponential stability of the switched nonlinear system under arbitrary switching signals. In addition, through the special deformation of the matrix and Schur complement, the controllers with asynchronous switching are designed. Finally, a numerical example and a practical example of river pollution control are provided to show the validity and potential of the developed results.


Author(s):  
Yilin Shang ◽  
Leipo Liu ◽  
Yifan Di ◽  
Zhumu Fu ◽  
Bo Fan

This paper considers the problem of guaranteed cost and finite-time event-triggered control of fractional-order switched systems. Firstly, an event-triggered scheme including both the information of current state and an exponential decay function is proposed, and a novel cost function that adopts the characteristics of fractional-order integration is presented. Secondly, some sufficient conditions are derived to guarantee that the corresponding closed-loop system is finite-time stable with a certain cost upper bound, using multiple Lyapunov functions and average dwell time approach. Meanwhile, the event-triggered parameters and state feedback gains are simultaneously obtained via solving linear matrix inequalities. Moreover, Zeno behavior does not exist by finding a positive lower bound of the triggered interval. Finally, an example about fractional-order switched electrical circuit is provided to show the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yanke Zhong ◽  
Tefang Chen

This paper is concerned with the design of a robust observer for the switched positive linear system with uncertainties. Sufficient conditions of building a robust observer are established by using the multiple copositive Lyapunov-krasovskii function and the average dwell time approach. By introducing an auxiliary slack variable, these sufficient conditions are transformed into LMI (linear matrix inequality). A numerical example is given to illustrate the validities of obtained results.


2019 ◽  
Vol 41 (12) ◽  
pp. 3364-3371 ◽  
Author(s):  
Jinxia Liang ◽  
Baowei Wu ◽  
Lili Liu ◽  
Yue-E Wang ◽  
Changtao Li

Finite-time stability and finite-time boundedness of fractional order switched systems with [Formula: see text] are investigated in this paper. First of all, by employing the average dwell time technique and Lyapunov functional method, some sufficient conditions for finite-time stability and finite-time boundedness of fractional order switched systems are proposed. Furthermore, the state feedback controllers are constructed, and sufficient conditions are given to ensure that the corresponding closed-loop systems are finite-time stable and finite-time bounded. These conditions can be easily obtained in terms of linear matrix inequalities. Finally, two numerical examples are given to show the effectiveness of the results.


Author(s):  
Ferruh İlhan ◽  
Ozkan Karabacak ◽  
Rafael Wisniewski

A sufficient condition for the almost global sta-bility of nonlinear switched systems under average dwell timerestriction is obtained. This condition is derived leaning uponthe existence of multiple Lyapunov densities, which are associ-ated to subsystems and satisfy some compatibility conditions.An upper bound for the average dwell time that ensures almostglobal stability is obtained.


Sign in / Sign up

Export Citation Format

Share Document