Robust mixed H2/H∞ fuzzy tracking control of photovoltaic system subject to asymmetric actuator saturation

Author(s):  
Noureddine Boubekri ◽  
Sofiane Doudou ◽  
Dounia Saifia ◽  
Mohammed Chadli

This paper focuses on mixed [Formula: see text] fuzzy maximum power point tracking (MPPT) of photovoltaic (PV) system under asymmetric saturation and variations in climatic conditions. To maximize the power from the PV panel array, the DC–DC boost converter is controlled by its duty ratio which is practically saturated between 0 and 1. MPPT based on conventional control presents the problems of oscillations around maximum power point (MPP) and divergence under rapid climatic changes. In order to attenuate the effect of atmospheric condition variation and take into account asymmetric saturation of the duty ratio, we propose a novel robust saturated controller based on both [Formula: see text] performances and Takagi-Sugeno (T-S) representation of PV-boost nonlinear system. Within this approach, the nonlinear PV-boost system and its reference are first described by T-S fuzzy models. Second, the saturation effect is represented by a polytopic model. Then, a fuzzy integral state feedback controller is designed to achieve stable MPPT control. Based on Lyapunov function, the mixed [Formula: see text] stabilization conditions are derived in terms of linear matrix inequalities (LMIs). The optimization of the attraction domain of closed-loop system is solved as a convex optimization problem in LMI terms. Finally, the efficiency of the proposed controller under irradiance and temperature variations is demonstrated through the simulation results. The comparison with some existing controllers shows an improvement of MPPT control performance in terms of power extraction.

2012 ◽  
Vol 588-589 ◽  
pp. 583-586
Author(s):  
Yu Xin Wang ◽  
Feng Ge Zhang ◽  
Xiao Ju Yin ◽  
Shi Lu Zhu

A derivation calculation methods for the maximum power point tracking is proposed in this paper. This method is the direct calculation method for the maximum power point tracking, through the calculation of the derivative value of the power to voltage, adjust the change values of occupies emptiescompared, which is used to deduce the voltage and current value, judge whether the derivative of the power to the voltage is zero, if it is ture, the maximum power point is got. Hardware is used the method to regulate the duty ratio of PWM in DC/DC boost circuit ,though once sampling, it can calculate the value of voltage and the duty ratio at maximum power point. The prototype experiments using DSP2812 chip verify that the inverter can better realize the most power tracing, high accuracy, and the system has the high stability.


Author(s):  
Norazlan Hashim ◽  
Zainal Salam ◽  
Dalina Johari ◽  
Nik Fasdi Nik Ismail

<span>The main components of a Stand-Alone Photovoltaic (SAPV) system consists of PV array, DC-DC converter, load and the maximum power point tracking (MPPT) control algorithm. MPPT algorithm was used for extracting maximum available power from PV module under a particular environmental condition by controlling the duty ratio of DC-DC converter. Based on maximum power transfer theorem, by changing the duty cycle, the load resistance as seen by the source is varied and matched with the internal resistance of PV module at maximum power point (MPP) so as to transfer the maximum power. Under sudden changes in solar irradiance, the selection of MPPT algorithm’s sampling time (T<sub>S_MPPT</sub>) is very much depends on two main components of the converter circuit namely; inductor and capacitor. As the value of these components increases, the settling time of the transient response for PV voltage and current will also increase linearly. Consequently, T<sub>S_MPPT </sub>needs to be increased for accurate MPPT and therefore reduce the tracking speed. This work presents a design considerations of DC-DC Boost Converter used in SAPV system for fast and accurate MPPT algorithm. The conventional Hill Climbing (HC) algorithm has been applied to track the MPP when subjected to sudden changes in solar irradiance. By selecting the optimum value of the converter circuit components, a fast and accurate MPPT especially during sudden changes in irradiance has been realized.</span>


2022 ◽  
Author(s):  
Anbarasi MP ◽  
Kanthalakshmi S

Abstract A control strategy for power maximization which is an important mechanism to extract maximum power under changing environmental conditions using Adaptive Particle Swarm Optimization (APSO) is proposed in this paper. An Adaptive Inertia Weighting Factor (AIWF) is utilised in the velocity update equation of traditional PSO for the improvement in speed of convergence and precision in tracking Maximum Power Point (MPP) in standalone Photovoltaic system. Adaptation of weights based on the success rate of particles towards maximum power extraction is the most promising feature of AIWF. The inertia weight is kept constant in traditional PSO for the complete duration of optimization process. The MPPT in PV system poses a dynamic optimization problem and the proposed APSO approach paves way not only to track MPP under uniform irradiation conditions, but also to track MPP under non uniform irradiation conditions. Simulations are done in MATLAB/Simulink environment to verify the effectiveness of proposed technique in comparison with the existing PSO technique. With change in irradiation and temperature, the APSO technique is found to provide better results in terms of tracking speed and efficiency. Hardware utilizing dSPACE DS1104 controller board is developed in the laboratory to verify the effectiveness of APSO method in real time.


2013 ◽  
Vol 291-294 ◽  
pp. 181-187
Author(s):  
Long Hu Chen ◽  
Shao Lou Song ◽  
Xiao Ju Chen ◽  
Jian Rong Zhao

The model and simulation of three-phase Two-level Grid-connected Photovoltaic System are established. According to the equivalent circuit and mathematical model of the PV cell, the general simulation model of photovoltaic array is established. Regulating duty ratio in Boost circuit to realize the maximum power point tracing with method of high-precision incremental conductance. Model of photovoltaic inverter is established based on power decoupling vector control strategy. SVPWM modulation improves the utilization ratio of voltage in DC side. Finally, the simulation of three-phase two-level grid-connected photovoltaic system is conducted in MATLAB. The result shows that the system can rapidly and accurately track maximum power point and the output of current keep in the same frequency and phase, which can be connected to power grid flexibly.


2013 ◽  
Vol 648 ◽  
pp. 301-304
Author(s):  
Ya Zhou Shan ◽  
Cheng Zhi Yang ◽  
Hao Sun

In this paper, a strategy of global Maximum Power Point Tracking (MPPT) for energy saving based on fuzzy logic control is presented and its characteristic is to combine intelligent booster with the fuzzy MPPT control technology. Through detecting the change of the power output of the solar photovoltaic system, maximum power point is tracked by regulating the duty ratio of switch tube automatically. The simulation results show: when the sunlight intensity is changed from weak to strong, the changes of power can be rapidly tracked and it always closes to the maximum power point and has good stability.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hafsa Abouadane ◽  
Abderrahim Fakkar ◽  
Benyounes Oukarfi

The photovoltaic panel is characterized by a unique point called the maximum power point (MPP) where the panel produces its maximum power. However, this point is highly influenced by the weather conditions and the fluctuation of load which drop the efficiency of the photovoltaic system. Therefore, the insertion of the maximum power point tracking (MPPT) is compulsory to track the maximum power of the panel. The approach adopted in this paper is based on combining the strengths of two maximum power point tracking techniques. As a result, an efficient maximum power point tracking method is obtained. It leads to an accurate determination of the MPP during different situations of climatic conditions and load. To validate the effectiveness of the proposed MPPT method, it has been simulated in matlab/simulink under different conditions.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3260
Author(s):  
Ming-Fa Tsai ◽  
Chung-Shi Tseng ◽  
Kuo-Tung Hung ◽  
Shih-Hua Lin

In this study, based on the slope of power versus voltage, a novel maximum-power-point tracking algorithm using a neural network compensator was proposed and implemented on a TI TMS320F28335 digital signal processing chip, which can easily process the input signals conversion and the complex floating-point computation on the neural network of the proposed control scheme. Because the output power of the photovoltaic system is a function of the solar irradiation, cell temperature, and characteristics of the photovoltaic array, the analytic solution for obtaining the maximum power is difficult to obtain due to its complexity, nonlinearity, and uncertainties of parameters. The innovation of this work is to obtain the maximum power of the photovoltaic system using a neural network with the idea of transferring the maximum-power-point tracking problem into a proportional-integral current control problem despite the variation in solar irradiation, cell temperature, and the electrical load characteristics. The current controller parameters are determined via a genetic algorithm for finding the controller parameters by the minimization of a complicatedly nonlinear performance index function. The experimental result shows the output power of the photovoltaic system, which consists of the series connection of two 155-W TYN-155S5 modules, is 267.42 W at certain solar irradiation and ambient temperature. From the simulation and experimental results, the validity of the proposed controller was verified.


2013 ◽  
Vol 853 ◽  
pp. 352-357
Author(s):  
Calin Chioreanu

Photovoltaic panels (PF), combined with lead-acid battery (AE), are increasingly used, to produce electricity. To work in maximum power points, between (PF) and (AE) is interposed a static converter (DC-DC), which is a harmonic pollution source. Within the paper there are calculated the power losses, due to current harmonics, of a photovoltaic system working at its maximum power. Photovoltaic system works at its maximum power, if in the electronic system there is permanently voltage control among solar battery terminals.


Sign in / Sign up

Export Citation Format

Share Document