scholarly journals Urban energy system management for enhanced energy potential for upcoming smart cities

2020 ◽  
Vol 38 (5) ◽  
pp. 1968-1982
Author(s):  
Deepak Kumar

Scientific and industrial development has given rise to a rapidly increasing energy demand. Alternative and augmented energy resources are expected everywhere due to scarcity and depletion of other non-renewable resources. During recent years wind and solar had emerged as a promising cleaner energy source to offer a favourable solution with better efficiency. Hence, the attention has now diverted towards scaling up of hybrid system of energy generation. Numerous attempts have been taken to demonstrate the technological development concerning the requirement of the region. Whilst some research has already started to evaluate the working of the prototype, insignificant attention has been paid towards it. The current work also focuses on the simulation with hybrid urban renewable energy systems for techno-economic feasibility analysis. There were earlier attempts to report the advancement occurred in the technological, scientific and industrial sector due to hybrid renewable energy system. In some regard, it was an attempt to showcase the modelling of a typical urban requirement in an hourly load profile to identify in the energy potentials of the urban region. These will help to summarize the past, present and future trends of the hybrid energy system design, development and implementation for the urban region, which can be later on replicated to other parts of the world.

2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Author(s):  
Reza Alayi ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Majid Gharibi ◽  
Sara Abbasi zanghaneh ◽  
Mehdi Jahangiri ◽  
...  

Transitioning to renewable energy is part of the answer to, on the one hand, growing industrial development and the rising demand for energy and, on the other,  environmental concerns and the need to preserve fossil fuel resources for future generations. This research focuses on the potential for integrating hydrogen storage into a highly reliable renewable energy system. The purpose of this study is to determine the potential of renewable energy in an Iranian location, in a project that looks at a power grid in various connected and disconnected scenarios involving hydrogen storage. The energy potential is identified: annual production capacity is 2218818 kW, requiring a total investment outlay of US$697,624.


Taking into consideration of continuously increasing consumption of the electricity and perturb towards environmental issues, renewable energy sources have been broadly used for generation of electricity. A Hybrid Energy System can be elucidated as systems which consist of various energy sources such as wind, solar, fuel cell, diesel generator and storage systems such as batteries to store energy are integrated and interconnected to satisfy the load energy demand. This paper infers the generation of electricity by utilizing the Hybrid Renewable Energy System (HRES). This paper presents the modelling and future challenges of the HRES.


Sign in / Sign up

Export Citation Format

Share Document