scholarly journals Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging

2019 ◽  
Vol 42 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Hideyuki Hasegawa ◽  
Ryo Nagaoka

High-frame-rate ultrasound is an emerging technique for functional ultrasound imaging. However, the lateral spatial resolution and contrast in high-frame-rate ultrasound with an unfocused transmit beam are inherently lower than those in conventional ultrasonic imaging based on the line-by-line acquisition using a focused ultrasonic beam because of the low directivity of the transmit beam. Coherence-based beamforming methods were introduced in ultrasound imaging for improvement of image quality. Such methods improve the lateral spatial resolution using the coherence among ultrasonic echo signals received by individual transducer elements. In this study, a new method based on the signal-to-noise ratio (SNR) among the element echo signals was developed for enhancement of the effect of the coherence factor (CF), which was previously developed for improvement in spatial resolution and contrast. In the proposed method, a new factor, namely, SNR factor, was introduced, and the relationship between the previously developed CF and SNR factor was discussed. The proposed method was implemented in plane wave imaging, and the performance was evaluated by simulated and phantom experiments. In simulation, the lateral spatial resolution and contrast obtained with the conventional CF were 0.23 mm and 47.0 dB, respectively, which were significantly better than 0.39 mm and 15.3 dB obtained by conventional delay-and-sum (DAS) beamforming. Using the proposed method, the lateral spatial resolution and contrast were further improved to 0.12 mm and 69.8 dB, respectively. Similar trends were found also in phantom experiments.

2015 ◽  
Vol 60 (21) ◽  
pp. 8549-8566 ◽  
Author(s):  
Elodie Tiran ◽  
Thomas Deffieux ◽  
Mafalda Correia ◽  
David Maresca ◽  
Bruno-Felix Osmanski ◽  
...  

2014 ◽  
Vol 74 (6) ◽  
pp. 1587-1597 ◽  
Author(s):  
Mitchell A. Cooper ◽  
Thanh D. Nguyen ◽  
Bo Xu ◽  
Martin R. Prince ◽  
Michael Elad ◽  
...  

Author(s):  
Timur Gureyev ◽  
David M. Paganin ◽  
Alex Kozlov ◽  
Harry Quiney

2002 ◽  
Vol 47 (4) ◽  
pp. 687-695 ◽  
Author(s):  
Jim M. Wild ◽  
Martyn N.J. Paley ◽  
Magalie Viallon ◽  
Wolfgang G. Schreiber ◽  
Edwin J.R. van Beek ◽  
...  

2021 ◽  
Author(s):  
Tyler Hornsby

<div>Frequency compounding is an ultrasound imaging technique used to reduce artifacts and improve signal-to-noise-ratio (SNR). In this work a new nonlinear frequency compounding (NLFC) method was introduced, and its application in B-mode imaging and noninvasive thermometry was investigated. NLFC input frequencies were optimized to maximize speckle-signal-to-noise-ratio (SSNR) in a tissue mimicking phantom, and the method was then used to produce maps of the temperature sensitive change in backscattered energy of acoustic harmonics (<i>h</i>CBE) during heating of ex vivo porcine tissue with a focused ultrasound transducer. A <i>h</i>CBE-to-temperature calibration was also performed and temperature maps produced. Lastly, a comparative study of the NLFC and previously used nonlinear single frequency (NLSF) method was completed. By using the NLFC method it was concluded that SSNR of B-mode and backscattered energy images, SNR of <i>h</i>CBE maps, and temperature map agreement with a theoretical COMSOL based model were improved over the previously used NLSF method.</div>


Sign in / Sign up

Export Citation Format

Share Document