The Nitric Oxide Donor SIN-1-Produced Panic-Like Behaviour And Fear-Induced Antinociception Are Modulated By NMDA Receptors In The Anterior Hypothalamus

2018 ◽  
Vol 32 (6) ◽  
pp. 711-722 ◽  
Author(s):  
Luiz Luciano Falconi-Sobrinho ◽  
Norberto Cysne Coimbra

Background: An excitatory imbalance in the hypothalamus of rodents caused by local chemical stimulation elicits fear-related defensive reactions such as escape and freezing. In addition, these panic attack-like defensive reactions induced by hypothalamic neurons may cause antinociception. However, there is a shortage of studies showing the participation of the anterior hypothalamic nucleus in these adaptive defensive mechanisms. Nitric oxide (NO) donors have been shown to evoke fear-related defensive responses when microinjected into paralimbic and limbic structures, and this excitatory neuromodulation can recruit the glutamatergic system. Aims: The aim of this work was to investigate the influence of the glutamatergic system in the nitrergic effects on fear-related defensive responses organised by anterior hypothalamic neurons. Methods: The present study evaluates the effects of the molsidomine active metabolite SIN-1 NO donor administered into the anterior hypothalamus (AH) of mice at different concentrations (75, 150 and 300 nmol/0.1 μL). Then, we investigated the effects of pre-treatment of the AH with AP-7 (an N-methyl-d-aspartate (NMDA) receptor-selective antagonist; 0.02, 0.2 and 2 nmol/0.1 μL) on the behavioural and antinociceptive effects provoked by AH chemical stimulation with SIN-1 microinjections. Results: The 300 nmol dose of SIN-1 was the most effective at causing panic-like defensive behaviours followed by a significant antinociceptive response. In addition, both of these effects were attenuated or inhibited by AH pre-treatment with AP-7. Conclusions: These findings suggest that the panicogenic and antinociceptive effects evoked by intra-AH microinjections of SIN-1 depend on NMDA receptor activation.

Author(s):  
Qin Guo ◽  
Xian-Ming Lin ◽  
Zhong Di ◽  
Quan-Ai Zhang ◽  
Shuo Jiang

Background: Converging evidence indicates that glutamatergic system and glia are directly implicated in the pathophysiology of depression. Clinical studies indicate that electroacupuncture (EA) has antidepressant-like effect with low side effects for depression. However, the underlying antidepressant mechanism of acupuncture remains obscure. Methods: Chronic unpredictable mild stress (CUMS)-induced depressive rats were used to induce depressive-like behavior, and evaluated by the weight change, open field test, sucrose preference test, and novelty suppressed feeding test. EA, NMDA receptor subunit 2A antagonist (NR2A RA) or NMDA receptor subunit 2B antagonist (NR2B RA) was used for comparison. High performance liquid chromatography (HPLC) was performed to detect the content of hippocampal glutamate, while western blot for the hippocampal protein expression levels of calcium/calmodulin-dependent protein kinase II (CaMKII), Bax, caspase 3 and B-cell lymphoma-2 (Bcl-2). The distribution of glutamate ionotropic receptor NMDA type subunit 2A (NR2A), neuronal nuclear protein (NeuN), glutamate ionotropic receptor NMDA type subunit 2B (NR2B) and glial fibrillary acidic protein (GFAP) were detected by immunofluorescence. Results: Significant depression behavior (reduced body weight and sucrose preference, increased feeding and immobility time) was produced in CUMS-induced depressive rats, which was reversed significantly by EA. EA decreased hippocampal glutamate level. EA led to a significant decrease in expression levels of Bax, caspase 3 and CaMKⅡ accompanied by increased Bcl-2 expression level. Furthermore, EA significantly increased NR2A expression level as well as decreased NR2B expression level in hippocampus. Conclusion: EA ameliorated depression-like behavior in CUMS rats, which might be mediated, at least in part, by regulating the glutamate, NMDA receptors and apoptosis in the hippocampus.


Sign in / Sign up

Export Citation Format

Share Document