Noise reduction and image quality in ultra-high resolution computed tomography of the temporal bone using advanced modeled iterative reconstruction

2019 ◽  
Vol 60 (9) ◽  
pp. 1135-1143 ◽  
Author(s):  
Johann-Martin Hempel ◽  
Malte Niklas Bongers ◽  
Katharina Braun ◽  
Ulrike Ernemann ◽  
Georg Bier
2016 ◽  
Vol 67 (3) ◽  
pp. 218-224 ◽  
Author(s):  
Magdalini Smarda ◽  
Efstathios Efstathopoulos ◽  
Argyro Mazioti ◽  
Sofia Kordolaimi ◽  
Agapi Ploussi ◽  
...  

Purpose High radiosensitivity of children undergoing repetitive computed tomography examinations necessitates the use of iterative reconstruction algorithms in order to achieve a significant radiation dose reduction. The goal of this study is to compare the iDose iterative reconstruction algorithm with filtered backprojection in terms of radiation exposure and image quality in 33 chest high-resolution computed tomography examinations performed in young children with chronic bronchitis. Methods Fourteen patients were scanned using the filtered backprojection protocol while 19 patients using the iDose protocol and reduced milliampere-seconds, both on a 64-detector row computed tomography scanner. The iDose group images were reconstructed with different iDose levels (2, 4, and 6). Radiation exposure quantities were estimated, while subjective and objective image qualities were evaluated. Unpaired t tests were used for data statistical analysis. Results The iDose application allowed significant effective dose reduction (about 80%). Subjective image quality evaluation showed satisfactory results even with iDose level 2, whereas it approached excellent image with iDose level 6. Subjective image noise was comparable between the 2 groups with the use of iDose level 4, while objective noise was comparable between filtered backprojection and iterative reconstruction level 6 images. Conclusions The iDose algorithm use in pediatric chest high-resolution computed tomography reduces radiation exposure without compromising image quality. Further evaluation with iterative reconstruction algorithms is needed in order to establish high-resolution computed tomography as the gold standard low-dose method for children suffering from chronic lung diseases.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Lubna Bushara ◽  
Mohamed Yousef ◽  
Ikhlas Abdelaziz ◽  
Mogahid Zidan ◽  
Dalia Bilal ◽  
...  

This study aimed to determine the measurements of the cochlea among healthy subjects and hearing deafness subjects using a High Resolution Computed Tomography (HRCT). A total of 230 temporal bone HRCT cases were retrospectively investigated in the period spanning from 2011 to 2015. Three 64-slice units were used to examine patients with clinical complaints of hearing loss conditions at three Radiology departments in Khartoum, Sudan. For the control group (A) healthy subjects, the mean width of the right and left cochlear were 5.61±0.40 mm and 5.56±0.58 mm, the height were 3.56±0.36 mm and 3.54±0.36 mm, the basal turn width were 1.87±0.19 mm and 1.88 ±0.18 mm, the width of the cochlear nerve canal were 2.02±1.23 and 1.93±0.20, cochlear nerve density was 279.41±159.02 and 306.84±336.9 HU respectively. However, for the experimental group (B), the mean width of the right and left cochlear width were 5.38±0.46 mm and 5.34±0.30 mm, the height were 3.53±0.25 mm and 3.49±0.28mm, the basal turn width were 1.76±0.13 mm, and 1.79±0.13 mm, the width of the cochlear nerve canal were 1.75±0.18mm and 1.73±0.18mm, and cochlear nerve density were 232.84±316.82 and 196.58±230.05 HU, respectively. The study found there was a significant difference in cochlea’s measurement between the two groups with a p-value < 0.05. This study had established baseline measurements for the cochlear for the healthy Sudanese population. Furthermore, it found that HRCT of the temporal bone was the best for investigation of the cochlear and could provide a guide for the clinicians to manage congenital hearing loss.


ORL ◽  
2003 ◽  
Vol 65 (2) ◽  
pp. 71-75 ◽  
Author(s):  
Spiros Manolidis ◽  
Bobby Williamson ◽  
Ling-Ling Chan ◽  
Katherine H. Taber ◽  
L. Anne Hayman

2019 ◽  
Vol 36 (7) ◽  
pp. 1029-1039
Author(s):  
Renata M. Knoll ◽  
Katherine L. Reinshagen ◽  
Samuel R. Barber ◽  
Iman Ghanad ◽  
Randel Swanson ◽  
...  

2004 ◽  
Vol 33 (06) ◽  
pp. 387 ◽  
Author(s):  
Gazanfer Ekinci ◽  
Ahmet Koç ◽  
Feyyaz Baltacioğlu ◽  
Bayram Veyseller ◽  
Orhan Altintaş ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document