filtered backprojection
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 24)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Poulami Somanya Ganguly ◽  
Daniël M. Pelt ◽  
Doga Gürsoy ◽  
Francesco de Carlo ◽  
K. Joost Batenburg

For reconstructing large tomographic datasets fast, filtered backprojection-type or Fourier-based algorithms are still the method of choice, as they have been for decades. These robust and computationally efficient algorithms have been integrated in a broad range of software packages. The continuous mathematical formulas used for image reconstruction in such algorithms are unambiguous. However, variations in discretization and interpolation result in quantitative differences between reconstructed images, and corresponding segmentations, obtained from different software. This hinders reproducibility of experimental results, making it difficult to ensure that results and conclusions from experiments can be reproduced at different facilities or using different software. In this paper, a way to reduce such differences by optimizing the filter used in analytical algorithms is proposed. These filters can be computed using a wrapper routine around a black-box implementation of a reconstruction algorithm, and lead to quantitatively similar reconstructions. Use cases for this approach are demonstrated by computing implementation-adapted filters for several open-source implementations and applying them to simulated phantoms and real-world data acquired at the synchrotron. Our contribution to a reproducible reconstruction step forms a building block towards a fully reproducible synchrotron tomography data processing pipeline.


2021 ◽  
Vol 7 (8) ◽  
pp. 139
Author(s):  
Elena Morotti ◽  
Davide Evangelista ◽  
Elena Loli Piccolomini

Deep Learning is developing interesting tools that are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green AI literature, we propose a shallow neural network to perform efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results show that the proposed inexpensive network computes images of comparable (or even higher) quality in about one-fourth of time and is more robust than the widely used and very deep ResUNet for tomographic reconstructions from sparse-view protocols.


Author(s):  
Elena Morotti ◽  
Davide Evangelista ◽  
Elena Loli Piccolomini

Deep Learning is developing interesting tools which are of great interest for inverse imaging applications. In this work, we consider a medical imaging reconstruction task from subsampled measurements, which is an active research field where Convolutional Neural Networks have already revealed their great potential. However, the commonly used architectures are very deep and, hence, prone to overfitting and unfeasible for clinical usages. Inspired by the ideas of the green-AI literature, we here propose a shallow neural network to perform an efficient Learned Post-Processing on images roughly reconstructed by the filtered backprojection algorithm. The results obtained on images from the training set and on unseen images, using both the non-expensive network and the widely used very deep ResUNet show that the proposed network computes images of comparable or higher quality in about one fourth of time.


Author(s):  
Gengsheng L. Zeng ◽  
Megan Zeng

AbstractWhen the object contains metals, its x-ray computed tomography (CT) images are normally affected by streaking artifacts. These artifacts are mainly caused by the x-ray beam hardening effects, which deviate the measurements from their true values. One interesting observation of the metal artifacts is that certain regions of the metal artifacts often appear as negative pixel values. Our novel idea in this paper is to set up an objective function that restricts the negative pixel values in the image. We must point out that the naïve idea of setting the negative pixel values in the reconstructed image to zero does not give the same result. This paper proposes an iterative algorithm to optimize this objective function, and the unknowns are the metal affected projections. Once the metal affected projections are estimated, the filtered backprojection algorithm is used to reconstruct the final image. This paper applies the proposed algorithm to some airport bag CT scans. The bags all contain unknown metallic objects. The metal artifacts are effectively reduced by the proposed algorithm.


2021 ◽  
Author(s):  
Eli Lechtman

Computed tomography (CT) relies on computational algorithms to reconstruct images from CT projections. Current filtered backprojection reconstruction methods have inherent limitations in situations with sharp density gradients and limited beam views. In this thesis two novel reconstruction algorithms were introduced: the Algebraic Image Reconstruction (AIR) algorithm, and the Geometric Image Reconstruction Algorithm (GIRA). A CT simulation was developed to test these novel algorithms and compare their images to filtered backprojection images. AIR and GIRA each demonstrated their proof of principle in these preliminary tests. AIR and its extension, the Parsed AIR algorithm (PAIR), were able to reconstruct optimal images compared to filtered backprojection after empirically determining parameters relevant to the algorithms. While GIRA reconstructed optimal images in preliminary tests, reconstruction was complicated by error propagation for larger imaging domains. The initial success of these novel approaches justifies continued research and development to determine their feasibility for practical CT image reconstruction.


2021 ◽  
Author(s):  
Eli Lechtman

Computed tomography (CT) relies on computational algorithms to reconstruct images from CT projections. Current filtered backprojection reconstruction methods have inherent limitations in situations with sharp density gradients and limited beam views. In this thesis two novel reconstruction algorithms were introduced: the Algebraic Image Reconstruction (AIR) algorithm, and the Geometric Image Reconstruction Algorithm (GIRA). A CT simulation was developed to test these novel algorithms and compare their images to filtered backprojection images. AIR and GIRA each demonstrated their proof of principle in these preliminary tests. AIR and its extension, the Parsed AIR algorithm (PAIR), were able to reconstruct optimal images compared to filtered backprojection after empirically determining parameters relevant to the algorithms. While GIRA reconstructed optimal images in preliminary tests, reconstruction was complicated by error propagation for larger imaging domains. The initial success of these novel approaches justifies continued research and development to determine their feasibility for practical CT image reconstruction.


2020 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
José G. Marichal-Hernández ◽  
Ricardo Oliva-García ◽  
Óscar Gómez-Cárdenes ◽  
Iván Rodríguez-Méndez ◽  
José M. Rodríguez-Ramos

The Radon transform is a valuable tool in inverse problems such as the ones present in electromagnetic imaging. Up to now the inversion of the multiscale discrete Radon transform has been only possible by iterative numerical methods while the continuous Radon transform is usually tackled with the filtered backprojection approach. In this study, we will show, for the first time, that the multiscale discrete version of Radon transform can as well be inverted with filtered backprojection, and by doing so, we will achieve the fastest implementation until now of bidimensional discrete Radon inversion. Moreover, the proposed method allows the sacrifice of accuracy for further acceleration. It is a well-conditioned inversion that exhibits a resistance against noise similar to that of iterative methods.


2020 ◽  
Vol 4 (7) ◽  
pp. 45-50
Author(s):  
Zeng GL

Low-dose computed tomography (CT) can produce noisy images that may contain streaking artifacts. Removal of streaking artifacts normally requires iterative algorithms that model the transmission noise physics. A fast filtered backprojection (FBP) algorithm is introduced in this short paper. This algorithm is very simple and effective in removing the streaking artifacts in low-dose CT.


2020 ◽  
Vol 895 (1) ◽  
pp. 55
Author(s):  
Kyuhyoun Cho ◽  
Jongchul Chae ◽  
Ryun-Young Kwon ◽  
Su-Chan Bong ◽  
Kyung-Suk Cho

2020 ◽  
Vol 39 (5) ◽  
pp. 1636-1645 ◽  
Author(s):  
Seokhwan Jang ◽  
Seungeon Kim ◽  
Mina Kim ◽  
Kihong Son ◽  
Kyoung-Yong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document