Combined thermoelastic stress analysis and digital image correlation with a single infrared camera

2011 ◽  
Vol 46 (8) ◽  
pp. 783-793 ◽  
Author(s):  
M L Silva ◽  
G Ravichandran

A novel methodology simultaneously combining thermoelastic stress analysis (TSA) and digital image correlation (DIC) with a single infrared camera is presented. DIC is an optical method to determine deformation by image tracking with strains determined via differentiation. TSA is a non-contact measurement technique that provides the full-field stress directly using measured temperature changes. The combination of the two techniques improves the resolution and accuracy of TSA results by correcting for sample motion and distortion during loading. Illustrative examples, including an aluminium alloy plate with an edge crack and a nylon plate with a hole under tension, demonstrate the combined method which simultaneously measures stress and displacement.

2021 ◽  
Vol 71 (1) ◽  
pp. 61-78
Author(s):  
Hagara Martin ◽  
Pástor Miroslav

Abstract Understanding the levels of residual stresses in the material is very important in predicting the service life of structural elements. One of the most widely used techniques to quantify them is the drilling method, where a small hole is milled in the structure. If the residual stresses are present, stress redistribution will occur, resulting in deformation of the hole surroundings. Nowadays, there is an effort to replace the conventionally used strain gauges, i.e. special strain gauge rosettes, with full-field optical experimental techniques. This paper deals with analysing the possibilities of measuring the relieved strains/stresses with a unique drilling/measuring device, which, unlike other non-commercial measuring systems, uses the moving digital image correlation (DIC) system. Since correlation systems do not tend to move during operation, an analysis was performed describing the effect of changing the position of the single and stereo camera correlation systems on the quality of the results of the strain/stress analysis performed in the vicinity of the milled hole. The conclusion from the analyses performed is that there is no significant accumulation of correlation errors during measurement. Therefore, the information on the magnitudes of the strains/stresses relieved obtained by the moving DIC system can be used to quantify the residual stresses with an expected error corresponding to the sensitivity of this full-field optical experimental technique.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1154
Author(s):  
Dario De Domenico ◽  
Antonino Quattrocchi ◽  
Damiano Alizzio ◽  
Roberto Montanini ◽  
Santi Urso ◽  
...  

Digital Image Correlation (DIC) provides measurements without disturbing the specimen, which is a major advantage over contact methods. Additionally, DIC techniques provide full-field maps of response quantities like strains and displacements, unlike traditional methods that are limited to a local investigation. In this work, an experimental application of DIC is presented to investigate a problem of relevant interest in the civil engineering field, namely the interface behavior between externally bonded fabric reinforced cementitious mortar (FRCM) sheets and concrete substrate. This represents a widespread strengthening technique of existing reinforced concrete structures, but its effectiveness is strongly related to the bond behavior between composite fabric and underlying concrete. To investigate this phenomenon, a set of notched concrete beams are realized, reinforced with FRCM sheets on the bottom face, subsequently cured in different environmental conditions (humidity and temperature) and finally tested up to failure under three-point bending. Mechanical tests are carried out vis-à-vis DIC measurements using two distinct cameras simultaneously, one focused on the concrete front face and another focused on the FRCM-concrete interface. This experimental setup makes it possible to interpret the mechanical behavior and failure mode of the specimens not only from a traditional macroscopic viewpoint but also under a local perspective concerning the evolution of the strain distribution at the FRCM-concrete interface obtained by DIC in the pre- and postcracking phase.


Sign in / Sign up

Export Citation Format

Share Document