scholarly journals Differential Increases in Blood Flow Velocity in the Middle Cerebral Artery after Tourniquet Deflation during Sevoflurane, Isoflurane or Propofol Anaesthesia

2009 ◽  
Vol 37 (4) ◽  
pp. 598-603 ◽  
Author(s):  
Y. Kadoi ◽  
C. H. Kawauchi ◽  
M. Ide ◽  
S. Saito ◽  
A. Mizutani

The purpose of this study was to examine the comparative effects of sevoflurane, isoflurane or propofol on cerebral blood flow velocity after tourniquet deflation during orthopaedic surgery. Thirty patients undergoing elective orthopaedic surgery were randomly divided into sevoflurane, isoflurane and propofol groups. Anaesthesia was maintained with sevoflurane, isoflurane or propofol infusion in 33% oxygen and 67% nitrous oxide, in whatever concentrations were necessary to keep bispectral index values between 45 and 50. Ventilatory rate or tidal volume was adjusted to target PaCO2 of 35 mmHg. A 2.0 MHz transcranial Doppler probe was attached to the patient's head at the temporal window and mean blood flow velocity in the middle cerebral artery was continuously measured. The extremity was exsanguinated with an Esmarch bandage and the pneumatic tourniquet was inflated to a pressure of 450 mmHg. Arterial blood pressure, heart rate, velocity in the middle cerebral artery and arterial blood gas analysis were measured every minute for 10 minutes after release of the tourniquet in all three groups. Velocity in the middle cerebral artery in the three groups increased for five minutes after tourniquet deflation. Because of the different cerebrovascular effects of the three agents, the degree of increase in flow velocity in the isoflurane group was greater than in the other two groups, the change in flow velocity in the propofol group being the lowest (at three minutes after deflation 40∓7%, 32∓6% and 28∓10% in the isoflurane, sevoflurane and propofol groups respectively, P <0.05).

Medicina ◽  
2020 ◽  
Vol 56 (6) ◽  
pp. 288
Author(s):  
Rasa Bukauskienė ◽  
Edmundas Širvinskas ◽  
Tadas Lenkutis ◽  
Rimantas Benetis ◽  
Rasa Steponavičiūtė

Background and Objectives: The aim of this study is to identify risk factors for the development of delayed neurocognitive recovery (dNCR). Materials and Methods: 140 patients underwent neurocognitive evaluations (Adenbrooke, MoCa, trial making, and CAM test) and middle cerebral artery (MCA) blood flow velocity (BFV) measurements, one day before cardiac surgery. BFV was re-evaluated after anesthesia induction, before the beginning, middle, end, and after cardiopulmonary bypass (CPB) and postsurgery. To measure glial fibrillary acidic protein (GFAP) and neurofilament heavy chain (Nf-H), blood samples were collected after anesthesia induction, 24 and 48 h after the surgery. Neurocognitive evaluation was repeated 7–10 days after surgery. According to the results, patients were divided into two groups: with dNCR (dNCR group) and without dNCR (non-dNCR group). Results: 101 patients completed participation in this research. GFAP increased in both the non-dNCR group (p < 0.01) and in the dNCR group (p < 0.01), but there was no difference between the groups (after 24 h, p 0.342; after 48 h, p 0.273). Nf-H increased in both groups (p < 0.01), but there was no difference between them (after 24 h, p = 0.240; after 48 h, p = 0.597). MCA BFV was significantly lower in the dNCR group during the bypass (37.13 cm/s SD 7.70 versus 43.40 cm/s SD 9.56; p = 0.001) and after surgery (40.54 cm/s SD 11.21 versus 47.6 cm/s SD 12.01; p = 0.003). Results of neurocognitive tests correlated with CO2 concentration (Pearson’s r 0.40, p < 0.01), hematocrit (r 0.42, p < 0.01), MCA BFV during bypass (r 0.41, p < 0.01), and age (r −0.533, p < 0.01). The probability of developing dNCR increases 1.21 times with every one year of increased age (p < 0.01). The probability of developing dNCR increases 1.07 times with a decrease of BFV within 1 cm/s during bypass (p = 0.02). Conclusion: Risk factors contributing to dNCR among the tested patients were older age and middle cerebral artery blood flow velocity decrease during bypass.


1995 ◽  
Vol 83 (4) ◽  
pp. 721-726. ◽  
Author(s):  
Christian Werner ◽  
Eberhard Kochs ◽  
Hanswerner Bause ◽  
William E. Hoffman ◽  
Jochen Schulte am Esch

Background The current study investigates the effects of sufentanil on cerebral blood flow velocity and intracranial pressure (ICP) in 30 patients with intracranial hypertension after severe brain trauma (Glasgow coma scale &lt; 6). Methods Mechanical ventilation (FIO2 0.25-0.4) was adjusted to maintain arterial carbon dioxide tensions of 28-30 mmHg. Continuous infusion of midazolam (200 micrograms/kg/h intravenous) and fentanyl (2 micrograms/kg/h intravenous) was used for sedation. Mean arterial blood pressure (MAP, mmHg) was adjusted using norepinephrine infusion (1-5 micrograms/min). Mean blood flow velocity (Vmean, cm/s) was measured in the middle cerebral artery using a 2-MHz transcranial Doppler sonography system. ICP (mmHg) was measured using an epidural probe. After baseline measurements, a bolus of 3 micrograms/kg sufentanil was injected, and all parameters were continuously recorded for 30 min. The patients were assigned retrospectively to the following groups according to their blood pressure responses to sufentanil: group 1, MAP decrease of less than 10 mmHg, and group 2, MAP decrease of more than 10 mmHg. Results Heart rate, arterial blood gases, and esophageal temperature did not change over time in all patients. In 18 patients, MAP did not decrease after sufentanil (group 1). In 12 patients, sufentanil decreased MAP &gt; 10 mmHg from baseline despite norepinephrine infusion (group 2). ICP was constant in patients with maintained MAP (group 1) but was significantly increased in patients with decreased MAP. Vmean did not change with sufentanil injection regardless of changes in MAP. Conclusions The current data show that sufentanil (3 micrograms/kg intravenous) has no significant effect on middle cerebral artery blood flow velocity and ICP in patients with brain injury, intracranial hypertension, and controlled MAP. However, transient increases in ICP without changes in middle cerebral artery blood flow velocity may occur concomitant with decreases in MAP. This suggests that increases in ICP seen with sufentanil may be due to autoregulatory decreases in cerebral vascular resistance secondary to systemic hypotension.


2007 ◽  
Vol 29 (3) ◽  
pp. 260-263 ◽  
Author(s):  
Philip M. Lewis ◽  
Piotr Smielewski ◽  
John D. Pickard ◽  
Marek Czosnyka

2011 ◽  
Vol 2-3 ◽  
pp. 219-222
Author(s):  
Hong Wang ◽  
Xiao Mei Chi ◽  
Ya Jing Yan ◽  
Ning Ning Zhang

The cerebral blood flow velocity (CBFV) of middle cerebral artery (MCA) was detected during the fatigue driving using Transcranial Doppler. The CBFV was also analyzed after the fatigue driving by different means of relaxation to alleviate brain fatigue. The results show that the CBFV in MCA is reduced by driving fatigue.


1997 ◽  
Vol 273 (5) ◽  
pp. H2209-H2216 ◽  
Author(s):  
A. P. Blaber ◽  
R. L. Bondar ◽  
F. Stein ◽  
P. T. Dunphy ◽  
P. Moradshahi ◽  
...  

We examined spectral fractal characteristics of middle cerebral artery (MCA) mean blood flow velocity (MFV) and mean arterial blood pressure adjusted to the level of the brain (MAPbrain) during graded tilt (5 min supine, −10°, 10°, 30°, 60°, −10°, supine) in eight autonomic failure patients and age- and sex-matched controls. From supine to 60°, patients had a larger drop in MAPbrain (62 ± 4.7 vs. 23 ± 4.5 mmHg, P < 0.001; means ± SE) and MFV (16.4 ± 3.8 vs. 7.0 ± 2.5 cm/s, P < 0.001) than in controls. From supine to 60°, there was a trend toward a decrease in the slope of the fractal component (β) of MFV (MFV-β) in both the patients and the controls, but only the patients had a significant decrease in MFV-β (supine: patient = 2.21 ± 0.18, control = 1.99 ± 0.60; 60°: patient = 1.46 ± 0.24, control = 1.62 ± 0.19). The β value of MAPbrain(MAPbrain-β; 2.19 ± 0.05) was not significantly different between patients and controls and did not change with tilt. High and low degrees of regulatory complexity are indicated by values of β close to 1.0 and 2.0, respectively. The increase in fractal complexity of cerebral MFV in the patients with tilt suggests an increase in the degree of autoregulation in the patients. This may be related to the drop in MAPbrain. The different response of MFV-β compared with that of MAPbrain-β also indicates that MFV-β is related to the regulation of cerebral vascular resistance and not systemic blood pressure.


Sign in / Sign up

Export Citation Format

Share Document