pneumatic tourniquet
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 26)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ha-Jung Kim ◽  
Yeon Ju Kim ◽  
Jiyoung Kim ◽  
Hyungtae Kim ◽  
Young-Jin Ro ◽  
...  

AbstractApplying a pneumatic tourniquet provides surgeons with a bloodless surgical field. However, application of the tourniquet induces various physiological changes. We evaluated the effect of tourniquet deflation on the intracranial pressure by using ultrasonography to measure the optic nerve sheath diameter (ONSD) in patients undergoing lower limb surgery. The ONSD was measured in 20 patients at five time points: after anesthetic induction (T0) and immediately before (T1), immediately after (T2), 5 min after (T3), and 10 min after tourniquet deflation (T4). Hemodynamic and respiratory variables were recorded. The ONSD showed significant differences at each point (P < 0.001). The ONSDs at T2 and T3 were significantly greater than that at T1 (P = 0.0007 and < 0.0001, respectively). The change in the end-tidal carbon dioxide partial pressure (EtCO2) was similar to the change in the ONSD. The change in the ONSD was significantly correlated with the change in the EtCO2 after tourniquet deflation (r = 0.484, P = 0.030). In conclusion, the ONSD, as an indicator of intracranial pressure, increased after tourniquet deflation in patients undergoing lower limb surgery. This was correlated with an increased EtCO2 and arterial carbon dioxide partial pressure.Trial registration: ClinicalTrials.gov (NCT03782077).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iñigo Cearra ◽  
Borja Herrero de la Parte ◽  
Diana Isabel Moreno-Franco ◽  
Ignacio García-Alonso

AbstractCurrent methodology described to mimic lower limb ischaemia–reperfusion injury (LL-IRI) does not accurately define the procedures and pressures exerted to induce and maintain ischaemia. In this piece of work, we propose a well-defined and detailed rat model that simulates the conditions established in clinical practice guidelines for tourniquet application and allows us to test treatments that aim to prevent/reduce LL-IRI. Eighty-six male WAG/RijHsd rats were subjected to hind limb IRI (LL-IRI), using a mechanical system applying a 1 kg tension to induce and maintain ischemia for 2 or 3 h, and assessed the damage caused by reperfusion at biochemical and muscular levels at different time points. At the biochemical level, both 2 and 3 h of ischemia induced changes (except for electrolyte levels); 3 h of ischemia induced greater changes in specific markers of muscular damage: creatine kinase (CK) and lactate dehydrogenase (LDH). At the histopathological level, 3 h of ischemia and 24 h of reperfusion was associated with an increase in hind limb girth, cross-sectional area, and weight and presence of neutrophils, as well as histological damage in more than 60% of muscle fibres. Our model allows to reliably reproduce the damage associated with the use of a pneumatic tourniquet. CK and LDH, as well as measures of tissue damage, allow to define and characterize the response to LL-IRI-related damage. A period of 3 h of ischemia followed by 3 h of reperfusion caused only local damage but showed greater sensitivity to detect differences in future studies on prophylactic treatments against LL-IRI.


2021 ◽  
pp. 229255032110247
Author(s):  
Amit Persad ◽  
Kevin Mowbrey ◽  
Edward Tredget

Objective: Patients presenting with total body surface area (TBSA) >40% burns require significant surgical treatment. Two substantial challenges during these surgeries are limiting blood loss and maintaining core temperatures. To overcome these challenges, several techniques have been developed, ranging from the Pitkin syringe method to the pneumatic tourniquet strategy for large-volume hyperthermic insufflation. Here, we compare the pneumatic tourniquet method to a roller pump method for maintenance of intraoperative normothermia and control of bleeding. Methods: We conducted a retrospective chart review of 20 patients presenting with TBSA >40% burns, 10 of whom were treated with the rapid infusion roller pump and 10 of whom were treated with the pneumatic tourniquet technique. Patients from each group were controlled for % TBSA, presence of inhalation injury, age, and date of admission. We reviewed transfusion requirement and the intraoperative temperatures, as well as the average intraoperative drop in temperature. Results: We observed improvement in the infusion volume, operative time, intraoperative temperature drop, minimum intraoperative temperature, estimated blood loss, and amount of required transfusion. Conclusions: Our study suggests that the rapid infusion roller pump technique is capable of achieving superior intraoperative bleeding control and temperature maintenance compared to the pneumatic tourniquet technique, resulting in decreased transfusion requirement.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Luke Hughes ◽  
James McEwen

Abstract Background Development of automatic, pneumatic tourniquet technology and use of personalised tourniquet pressures has improved the safety and accuracy of surgical tourniquet systems. Personalisation of tourniquet pressure requires accurate measurement of limb occlusion pressure (LOP), which can be measured automatically through two different methods. The ‘embedded LOP’ method measures LOP using a dual-purpose tourniquet cuff acting as both patient sensor and pneumatic effector. The ‘distal LOP’ method measures LOP using a distal sensor applied to the patient’s finger or toe of the operating limb, using photoplethysmography to detect volumetric changes in peripheral blood circulation. The distal LOP method has been used clinically for many years; the embedded LOP method was developed recently with several advantages over the distal LOP method. While both methods have clinically acceptable accuracy in comparison to LOP measured using the manual Doppler ultrasound method, these two automatic methods have not been directly compared. The purpose of this study is to investigate if the embedded and distal methods of LOP measurement have clinically acceptable agreement. The differences in pairs of LOP measurement in the upper and lower limbs of 81 healthy individuals were compared using modified Bland and Altman analysis. In surgery, it is common for cuff pressure to deviate from the pressure setpoint due to limb manipulation. Surgical tourniquet systems utilise a ± 15 mmHg pressure alarm window, whereby if the cuff pressure deviates from the pressure setpoint by > 15 mmHg, an audiovisual alarm is triggered. Therefore, if the difference (bias) ± SE, 95% CI of the bias and SD of differences ± SE in LOP measurement between the embedded and distal methods were all within ±15 mmHg, this would demonstrate that the two methods have clinically acceptable agreement. Results LOP measurement using the embedded LOP method was − 0.81 ± 0.75 mmHg (bias ± standard error) lower than the distal LOP method. The 95% confidence interval of the bias was − 2.29 to 0.66 mmHg. The standard deviation of the differences ± standard error was 10.35 ± 0.49 mmHg. These results show that the embedded and distal methods of LOP measurement demonstrate clinically acceptable agreement. Conclusions The findings of this study demonstrate clinically acceptable agreement between the embedded and distal methods of LOP measurement. The findings support the use of the embedded LOP method of automatic LOP measurement using dual-purpose tourniquet cuffs to enable accurate, effective and simple prescription of personalised tourniquet cuff pressures in a clinical setting.


AORN Journal ◽  
2020 ◽  
Vol 111 (4) ◽  
Author(s):  
Lisa Croke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document