Non-Destructive Evaluation of Crack Initiation and Propagation in Continuously Reinforced Concrete Pavements

Author(s):  
Lucio Salles de Salles ◽  
Lev Khazanovich ◽  
José Tadeu Balbo

Transverse crack pattern significantly affects performance of continuously reinforced concrete pavement (CRCP). However, field and modeled crack spacing are based on visual surveys of fully developed transverse cracks visible on the slab surface. Because of the difficulties in detecting incipient cracks in concrete slabs, the effect that such cracks may have on CRCP performance is not currently considered. To address this issue, this paper presents a non-destructive evaluation methodology based on an ultrasonic linear-array system for detection of incipient cracks in CRCP slabs. Two ultrasonic signal-processing techniques were used. First, the Hilbert Transform Indicator was used to identify the presence of damage in the concrete slab indicating potential crack locations. Then ultrasonic image reconstructions of these locations were used to further evaluate crack presence. The methodology was applied to four sections of an experimental short CRCP composed of 50-m long slabs – short in comparison to traditional CRCP. The locations of 58 potential incipient cracks were identified updating the short CRCP crack spacing; 10 of these incipient cracks were confirmed as surface-visible cracks in later visual surveys. Additionally, the methodology shows potential to detect undesired crack patterns such as cluster and Y-cracking before the cracks emerge on the slab surface.

2017 ◽  
Vol 10 (6) ◽  
pp. 1182-1191
Author(s):  
L. S. SALLES ◽  
J. T. BALBO ◽  
L. KHAZANOVICH

Abstract In recent years, due to the destructive and unproductive character of pavement specimen extraction, pavement maintenance technology intensified the use of non-destructive techniques for pavement evaluation which resulted in the development of several devices and evaluation methods. This paper describes the use of technology based on low frequency ultrasonic tomography for evaluation of concrete pavement parameters. The equipment was applied in three experimental sections with different concrete pavements built at the University of Sao Paulo campus. The ultrasonic signal processing is given. The results analysis enables the efficient and reliable identification of thickness and reinforcement position within the concrete slab. Construction problems were evidenced in one of experimental sections with thickness deficiencies and reinforcement in a position below projected. Furthermore, the use of a novel concrete quality indicator was correlated with the presence of transverse cracks and alkali-silica reaction within the sections.


2013 ◽  
Vol 690-693 ◽  
pp. 1817-1820
Author(s):  
Quan Man Zhao ◽  
Hong Liang Zhang ◽  
Yan Hui Wang

The longterm field investigations in the US showed that punchouts were the most important distress in continuously reinforced concrete pavement (CRCP) and often developed in the cluster cracking with the crack spacing of 0.3m-0.6m. But, it was not sure whether punchouts were the most important distress in CRCP in China, so this paper carried out field investigations on several CRC pavements in China. Results showed that punchouts were the most serious distress and often occurred in cluster crack regions. Furthermore, this paper analyzed the transverse crack spacing distribution. Results showed that the transverse cracks spacing distribution followed Weibull’s distribution.


Author(s):  
Wael A. Zatar ◽  
Hai D. Nguyen ◽  
Hien M. Nghiem

Abstract This study aims at evaluating reinforced concrete (RC) bridge elements using ultrasonic pitch and catch (UPC) non-destructive testing (NDT) technique. A validation reinforced concrete slab with two embedded layers of rebars and artificial defects (voids, honeycombs, and debondings) was designed and tested. A commercial UPC NDT device (hereafter called “UPC device”), which is based on the ultrasonic shear-wave test method using dry-point-contact transmitting and receiving transducers in a “pitch-catch” configuration, was used to map internal defects of the validation RC slab. The recorded data from the UPC device was analyzed using a modified synthetic aperture focusing technique (SAFT). A software was developed to reconstruct 2-D images of the RC slab cross-sections using novel signal filtering and processing techniques. The results revealed that the 2-D image reconstructed from the developed software accurately exhibited locations and horizontal dimensions of the steel rebars, voids, and debondings. In addition, the developed software was capable to provide much higher resolution and sharper images of the anomalies inside the RC slab compared to the UPC device’s proprietary imaging software.


2014 ◽  
Vol 16 (1) ◽  
pp. 103 ◽  
Author(s):  
Ngoc Tan Nguyen ◽  
Zoubir Mehdi Sbartaï ◽  
Jean-François Lataste ◽  
Denys Breysse ◽  
Frédéric Bos

Sign in / Sign up

Export Citation Format

Share Document